ORGONOMETRIE (Teil 1)

von Peter Nasselstein

Copyright © 2003-2015 by Peter Nasselstein

I. Einführung ... 4

1. Der Orgonomische Funktionalismus 5
 a. Die Funktion .. 5
 b. Funktion und Funktionsprinzip 6
 c. Die Geschichte des Orgonomischen Funktionalismus 8

2. Funktionsgleichungen .. 9
 a. Homogene Funktionen .. 9
 b. Heterogene Funktionen .. 11
 c. Die Rolle des CFP .. 12

3. Entwicklungsgleichungen ... 16
 a. Entwicklung .. 16
 b. Erkenntnis ... 20
 c. CFP und Begriff ... 22

4. Schöpfungsgleichungen ... 24
 a. Liebe, Arbeit und Wissen ... 24
 b. Gedankengleichungen .. 27

5. Vollständige Gleichungen ... 29
 a. Qualität und Quantität ... 29
 b. Bewegungsenergie und Lageenergie 31
 c. Die Rolle des CFP in vollständigen Gleichungen 35
 d. Die vier Grundrechennarten 37

II. Orgonomischer Funktionalismus 39

1. Die organotische Strömung .. 39
 a. Organotischer Kontakt .. 39
 b. Die Identität von objektiven Vorgängen und subjektivem Erleben 41
 c. Varianten der organotischen Strömung 44
 d. Die Grundlage der Psychoanalyse 45
 e. Die Grundlage der Orgontherapie 47

2. Die kosmische Überlagerung 49
 a. Die Galaxien ... 49
 b. Familien und Arbeitsorganisationen 50
 c. Atome ... 52
 d. Bewußtsein .. 55
III. Das Wesen der Zahlen ... 57
 1. Der sekundäre Funktionsbereich .. 57
 a. Die Priorität der Qualität .. 57
 b. Das Problem der Null ... 59
 c. Das Problem des Unendlichen .. 60
 2. Der primäre Funktionsbereich ... 62
 a. Die funktionellen Zahlenreihen .. 62
 b. Die Entwicklungsgleichung der Zahlen 64
 c. Das „arithmetische Pendel“ ... 65
 d. Die Kreiselwelle .. 67

IV. Das Kr²-System ... 69
 1. Das tetrabasische und das Dezimalsystem 69
 a. Die Tetraetys ... 69
 b. Das Periodische System der Elemente 72
 c. Bodes Gesetz ... 74
 d. Kreisfunktion und Gravitation .. 76
 e. Das Dezimalsystem ... 77
 f. Reichs Einheitensystem ... 79
 2. Das System der physikalischen Einheiten 82
 a. Die physikalischen Größen ... 82
 b. Die Sekunde .. 83
 c. Das Meter ... 84
 d. Das Dreiersystem ... 86
 e. Elektromagnetismus ... 88
 f. Thermodynamik und physikalische Chemie 90
 g. Physiologische Einheiten .. 91
 h. Das organometrische Dimensionsprodukt 93

V. Das Wesen von Zeit und Raum .. 97
 1. Zeit und Länge .. 97
 a. Der „Rote Faden“ Zeit ... 97
 b. Die Zeitmodi .. 99
 2. Bewegung ... 102
 a. Das CFP von Zeit und Länge .. 102
 b. Orgonotische Bewegung und mechanische Bewegung 104
 c. Jenseits der Bewegung .. 107
 3. Die Struktur von Zeit und Raum .. 109
 a. Die „Psychosomatik“ von Zeit und Länge 109
 b. Die Dauer .. 112
 c. Die Tiefe .. 114

VI. Die Überwindung der Mechanik .. 119
 1. Die Überwindung des Hamiltonschen Prinzips 119
 a. Vom organomischen Potential zum mechanischen Potential .. 119
 b. Vom mechanischen Potential zum organomischen Potential .. 122
 2. Die Überwindung der Newtonschen Gesetze 127
 a. Von der KRW zur Pulsation ... 127
 b. Von der Pulsation zur KRW .. 130

www.orgonomie.net
VII. Die Lebensenergie (Orgon) in der Schulphysik 133
1. Die mathematischen Grundlagen der Schulphysik 133
 a. Algebra ... 133
 b. Differenzieren .. 136
 c. Integrieren .. 138
 d. Vektoren .. 139
2. Körper in Bewegung .. 142
 a. Masse .. 142
 b. Jenseits der Masse .. 144
 c. Himmelsmechanik .. 146
 d. Die Kreiselwelle .. 148
 e. Kosmische Überlagerung .. 151
3. Der Orgonenergie-Akkumulator .. 153
 a. Die Kreiselwelle (Schwingungen und Wellen) ... 153
 b. Wellen im Orgonenergie-Medium .. 154
 c. Von der Thermodynamik zum Orgonenergie-Akkumulator 155
 d. Von der Elektrostatik zum Orgonenergie-Akkumulator 158
 e. Elektrotechnik .. 160
 f. Orgontechnik .. 163
4. Kosmogonie ... 165
 a. Gravitation im Funktionsbereich „Bewegung“ .. 165
 b. Gravitation im Funktionsbereich „Erstrahlung“ ... 169
 c. Quantenmechanik .. 170
 d. Spezielle Relativitätstheorie ... 172
 e. Allgemeine Relativitätstheorie ... 175
 f. Funktionalismus ... 177

Literatur ... 187
I. Einführung

Das Wirken zweier entweder 1. parallel verlaufender, 2. sich wechselseitig ergänzender, 3. sich gegenseitig ausschließender, 4. sich ständig abwechselnder oder 5. sich ineinander verwandelnder Funktionen, die durch ein ihnen gemeinsames Funktionsprinzip zu einem Funktionspaar geworden sind, beschreibt die Orgonometrie mittels Funktionsgleichungen. Mit Entwicklungsgleichungen wird gezeigt, wie sich die Funktionsprinzipien entfalten und mit Schöpfungsgleichungen, wie vollkommen neue Funktionsprinzipien, von denen neue Entwicklungen ausgehen, aus dem kosmischen Orgone Energie-Ozean ins Leben treten.

Um den Ausführungen dieser Arbeit folgen zu können, muß der Leser sich die Bedeutung von nur 13 Symbolen einprägen, was einfach ist, weil sie derartig plastisch sind, daß ihre Bedeutung geradezu selbstevident ist:

1. ein Symbol für FUNKTION: §

2. fünf Symbole für VERKNÜPFUNG: — ➔ ↔ ➔ ↔ ➔

3. ein Symbol für ENTWICKLUNG:

4. zwei Symbole für SCHÖPFUNG: < >

5. zwei Symbole für VOLLSTÄNDIGE GLEICHUNGEN: = =<

und zusätzlich zwei „irreguläre“ Symbole für „Leerstellen“:

Im Folgenden werden sie nacheinander im Zusammenhang eingeführt und im Einzelnen erklärt.
I.1. Der Orgonomische Funktionalismus

I.1.a. Die Funktion

Diese „objektive Logik“ der Natur („Ur-Teilen“) kommt auch im Subjekt zum Ausdruck: im „Ur-Teilen“. Das hängt letztendlich mit unserer bioenergetischen, bzw. emotionalen Struktur zusammen: unsere biologische Energie fühlt sich entweder zu etwas hingezogen (Lust) oder von etwas abgestoßen (Angst) (Reich 1937). Auch die Sinnesorgane funktionieren so, man denke etwa an die Kontrastfarben (Goethes Farbenlehre). Die Sprache spiegelt auf eine unmißverständliche Art und Weise diese

I.1.b. Funktion und Funktionsprinzip

Der Mechano-Mystizismus ist dadurch gekennzeichnet, daß er mit Wesen und Erscheinung nicht auf eine geordnete und organische Weise umgehen kann. Er kennt nur Erscheinungen, die unverbunden nebeneinander stehen (Mechanismus, Kontaktlosigkeit), die aber, da man mit dem bloßen Konstatieren von Erscheinungen keine Wissenschaft begründen kann, nach willkürlichen Modellvorstellungen in Gruppen zusammengefaßt (a, b, c, d, e, f, g, h,) und dann, in einer Art „Polytheismus“, mit ihrem jeweiligen abstrakten „Wesen“ (Kraft, Gesetz, Prinzip, etc.) verbunden werden (A, B, C, D. E. F, G, H,):

```
| a | b | c | d | e | f | g | h | .... |
```
```
A | B | C | D | E | F | G | H | .... |
```

Abb. 1
Im Extremfall werden die Erscheinungen mit einem „Urwesen“ (Z) kurzgeschlossen (Mystizismus, verzerrter Kontakt):

![Diagramm 2](https://example.com/diagramm2.png)

Demgegenüber beschreibt der Funktionalismus die Welt so, wie sie ist: eine organische Welt, die sich nicht „spiegelt“ (Abb. 1) und in der es keine „Kurzschlüsse“ gibt (Abb. 2). Diesen *funktionellen* Umgang mit Wesen und Erscheinung kann man sich wie folgt plastisch vorstellen:

![Diagramm 3](https://example.com/diagramm3.png)

Eine einzelndastehende Gegebenheit verwandelt sich in eine Funktion, wenn sie sich mit einer anderen Gegebenheit paart: e wird durch f zu einer Funktion (und umgekehrt). i ist das eine Prinzip, das den beiden Funktionen e und f gemeinsam ist. Ohne dieses „Gemeinsame Funktionsprinzip“ (*Common Functioning Principle, CFP*), das für das Ganze steht, welches e und f umfaßt, wären e und f nur isolierte
„Tätigkeiten“, keine „Dienstleistungen“ in einem größeren Zusammenhang. Dadurch, daß sich i mit dem CFP von g und h, also mit j, paart, verwandelt sich das Funktionsprinzip i ebenfalls in eine Funktion (umgekehrt gilt das gleiche für j). i und j haben wiederum in k das ihnen gemeinsame Prinzip des Funktionierens.

Ein konkretes Beispiel in einer gängigeren Begrifflichkeit: die Emotion (i) ist das mittelbare Wesen der unmittelbaren Erscheinungen Lust (e) und Angst (f). Ihrerseits kann die Emotion isoliert als unmittelbare Erscheinung betrachtet werden. Wenn sich ihr Gegenpart, die Sensation (j), ihr zugesellt, stellt sich die Frage nach ihrer beiden mittelbarem Wesen: die Wahrnehmung (k).

I.1.c. Die Geschichte des Orgonomischen Funktionalismus

Der funktionelle Gegenpart der Wahrnehmung (k) ist die Erregung (l). Aus der Untersuchung der Gegensätzlichkeit und gleichzeitigen Identität dieses Funktionspaares entwickelte Reich in seiner psychoanalytischen Klinik zwischen 1919 und 1923 die ersten Ansätze dessen, was er später „Orgonomischer Funktionalismus“ nennen sollte. Die ersten Früchte der sich entwickelnden neuen Denktechnik finden sich in dem Artikel „Zur Trieb-Energetik“ (Reich 1975) von 1923 (Reich 1950a, S. 6).

Das an seine ersten klinischen Erfahrungen sich anschließende Studium der von Kant und Hegel ausgehenden Ansätze zur Kritik des Materialismus half Reich, seine Gedanken zu präzisieren und mit mehr Selbstbewußtsein zu vertreten. Zum Beispiel hatte der Neukantianer Friedrich Albert Lange dargelegt, daß wir zwar nicht auf Atome, oder andere mechanische Konstrukte, verzichten können, wenn wir die Welt erklären wollen, diese jedoch, statt konkret und „materiell“ zu sein, auch nicht mehr sind als eben das: Konstrukte, also bloße Produkte unseres Geistes. Entscheidend ist nun, daß Lange in der Konsequenz nicht einem platten Idealismus verfiel, denn, schreibt Lange, „die Vermutung, daß hinter den beiden korrespondierenden Welten, der materiellen und der Empfindungswelt, ein unbekanntes Drittes als ihre gemeinsame Ursache läge, würde tiefer führen, als die einfache Identifizierung derselben“ (Lange 1866, S. 613).

Langes Anschauung, die die Spaltung zwischen „Seele“ und „Atom“ überwand – und gleichzeitig beibehielt, führte ihn zu einer Ahnung von der kosmischen Orgonenergie:

gar im leeren Raum, der dann eben nicht leer wäre, sondern mit einer eigentlichen immateriellen Substanz erfüllt? (Lange 1866, S. 407)

Es ließe sich aber auch der dezidiert „undialektische“ Denker Henri Bergson zitieren, der den frühen Reich lange vor dessen Auseinandersetzung mit dem Dialektischen Materialismus entscheidend geprägt hat:¹

I.2. Funktionsgleichungen

I.2.a. Homogene Funktionen

Es kann nur vier Arten geben, wie zwei gleichartige („homogene“) Funktionen miteinander verknüpft sind, was man sich (a.) „logisch“ anhand von zwei vertikalen Pfeilen, sowie (b.) anhand von Wirkungszusammenhängen und (c.) „dialektischen“ Zusammenhängen vergegenwärtigen kann:

1. die beiden Funktionen verhalten sich zueinander „neutral“;
 a. die Pfeile heben sich gegenseitig auf, so daß keine Pfeilrichtung übrigbleibt;
 b. Parallelität, Variation;
 c. Position I – Position II.

Orgonometrisch: einfache Variation des gleichen Grundthemas, wie sie z.B. in der Zellteilung, der Knospung, der Verzweigung, etc. auftritt:

\[\text{A1} \quad \begin{array}{c}
\quad \downarrow \\
\quad \end{array} \quad \text{A2} \quad \text{Gl. 1} \]

Es folgen Funktionsgleichungen „mit Pfeilspitzen“, die auf einen „Gegensatz“ hinweisen.\(^2\)

2. die beiden Funktionen ergänzen einander und ziehen sich deshalb an;
 a. die Pfeile sind aufeinander gerichtet;
 b. Attraktion, Neutralisierung;

Orgonometrisch: einfacher Gegensatz: magnetischer Nordpol und magnetischer Südpol, Gehirn und Hand, Oberkörper und Unterkörper, etc.:

\[\text{A1} \quad \begin{array}{c}
\quad \longrightarrow \\
\quad \end{array} \quad \text{A2} \quad \text{Gl. 2} \]

3. die beiden Funktionen schließen einander aus und stoßen sich ab;
 a. die Pfeile zeigen voneinander weg;
 b. Repulsion, Polarisation;
 c. Position – Gegenposition.

Orgonometrisch: antagonistischer Gegensatz: Lust und Angst, Trinkwasserleitungen und Abwasserleitungen, genitale Gesellschaften und Saharasia, Oberkörper und Unterkörper (beim gepanzerten Menschen), etc.:

\[\text{A1} \quad \begin{array}{c}
\quad \begin{array}{c}
\quad \longrightarrow \\
\quad \end{array} \quad \quad \begin{array}{c}
\quad \longrightarrow \\
\quad \end{array} \\
\quad \end{array} \quad \text{A2} \quad \text{Gl. 3} \]

4. zwischen den beiden Funktionen kommt es zu einem ständigen Wechsel, einem Hin und Her;
 a. die beiden (vertikal etwas verschobenen Pfeile) weisen in zwei verschiedene Richtungen;
 b. Wechsel von Attraktion und Repulsion;

\(^2\)Offenbar hat Reich nach Gl. 1 zunächst Gl. 3 definiert, die er anfangs nicht von Gl. 2 und Gl. 4 unterschied.

Orgonometrisch: *alternierender* Gegensatz, der in allen pulsatilen Vorgängen auftritt (der Wechsel von Expansion und Kontraktion):

![Diagram](A1 \leftrightarrow A2)

Gl. 4

I.2.b. Heterogene Funktionen

Betrachten wir die vier homogenen Funktionsgleichungen nacheinander, wird deutlich, wie sich eine logisch aus der anderen entwickelt: Die beiden Bestandteile jedes Funktionspaares können als bloße Varianten ihres CFP betrachtet werden (Gl. 1). Schaut man genauer hin, können sich die Funktionen als Gegensatz erweisen, dessen Teile sich, was naheliegt, wechselseitig ergänzen (Gl. 2), weshalb Reich von einem „einfachen Gegensatz“ spricht. (Wie wir im 4. Abschnitt sehen werden, gründet im Übergang von der einfachen Variation auf den einfachen Gegensatz die Existenz der Welt!) Der Gegensatz könnte aber auch komplexerer Natur sein und die beiden Funktionen sich gegenseitig ausschließen (Gl. 3). Werden diese *antagonistischen* Funktionen genauer betrachtet, könnte sich herausstellen, daß Position und Gegenposition einander abwechseln (Gl. 4). Ist aber erst einmal Dynamik im Spiel, könnte man auch einen der beiden Pfeile streichen, womit das Gleichgewicht der *homogenen* Funktionsgleichungen gesprengt wäre:

Weil Entwicklung stattfindet und die Transformation nur gerichtet denkbar ist, kann der Pfeil in *heterogenen* Gleichungen ausschließlich nach rechts (entsprechend der Schreibrichtung „von links nach rechts“) weisen. Zusätzlich wird die Heterogenität durch unterschiedliche Buchstaben hervorgehoben:

\[
\begin{array}{c}
\times \quad \int \\
\end{array}
\quad y
\]

(Gl. 5)

Derartige heterogene Funktionen findet man in jeder Entwicklung, etwa in der vom Ei zum Huhn und z.B. bei chemischen Umwandlungen, wie der von Eisen zu Eisenoxid (Rost). Oder wenn wir an die Erläuterungen zu Abb. 3 denken: während Lust (e) und Angst (f) homogene (genauer gesagt antagonistische) Gegensätze sind, bilden die tierferliegenden Funktionen Emotion (i) und Sensation (j) einen heterogenen Gegensatz. Emotionen können sich in Sensationen umwandeln (mechanistischer Intellektualismus) und umgekehrt Sensationen in Emotionen (mystische „Hingabe“). Besonders plastisch werden diese Transformationen im Roten Faschismus („Ché“) und im Schwarzen Faschismus („Hitler“). Ähnliches gilt für einen denkbaren Gegenpart von Lust und Angst: Kitzel (g) und Schmerz (h). Daß sie als heterogene Funktionen ineinander übergehen können, ist die Grundlage jeder sexuellen Perversion.

Wie bereits erwähnt, gesellt sich zur Wahrnehmung (k) als Gegenpart die Erregung (l). Hier haben wir es zwar ebenfalls mit einem heterogenen Gegensatz zu tun, aber gleichzeitig definiert die Beziehung zwischen diesen beiden Funktionen den Kontakt des Organismus mit der Umgebung und mit sich selbst. Störungen des Kontakts werden dadurch definiert, ob Erregung zu Wahrnehmung oder Wahrnehmung zu Erregung führt. (Mehr dazu im 4. Abschnitt.)

I.2.c. Die Rolle des CFP

Funktionsgleichungen drücken weder einen kausalen Zusammenhang, noch eine strukturelle Korrelation aus, sondern eine *Beziehung*. Und „Beziehung“ ist durch „Identität“ definiert. Dazu muß man sich nur die Frage stellen, was ein funktionelles Paar bestimmt: warum wird (bewußt anthropomorph formuliert) gerade dieser Partner gewählt und nicht jener?

Nehmen wir wieder das Beispiel der Emotionen, mit denen wir Abb. 3 illustriert haben, und führen sie zunächst nach oben hin fort: Um die Emotionen „Lust“ (e) und „Angst“ (f) im Detail beschreiben zu können, kann man sie ihrerseits als Funktionsprinzipien (CFPs) betrachten, die sich jeweils in zwei unterschiedliche Varianten aufteilen. Bei Lust bestände dieses funktionelle Paar einerseits aus *Hingabe* (a) und andererseits aus *Aktivität* (b, „man wirft den Kopf zurück und stößt das Becken nach vorn“), bei Angst aus *Rückzug* (c) und aus *Abwehr* (d, „der Igel rollt sich zusammen und spreizt seine Stacheln“). Einzeln betrachtet haben diese vier Varianten wenig mit Lust und Angst zu tun und könnten ebensogut mit anderen...

Funktionen gehen spezifische Beziehungen ein (Gl. 1 bis Gl. 5), weil sie durch eine tieferliegende dritte Funktion ihre Identität erhalten. In unserem Beispiel gehören Hingabe und Aktivität (a und b), Rückzug und Abwehr (c und d) jeweils nur deshalb zusammen, „haben eine Beziehung“, weil sie Varianten des Funktionsprinzips Lust (e) bzw. des Funktionsprinzips Angst (f) sind. Erst diese grundlegenden Funktionsprinzipien geben den oberflächlicheren Funktionsvarianten ihre Bedeutung.

Meist ist dieser identitätsstiftende „dritte Faktor“ (das CFP) dermaßen selbstverständlich, daß man ihn übersieht und seine Bedeutung selbst dann nicht erkennt, wenn ausdrücklich darauf hingewiesen wird: Tochterzellen sind durch ihre Mutterzelle „Geschwister“ (Gl. 1); Mann und Frau fühlen sich zueinander hingezogen, weil sie Menschen sind (Gl. 2); Lust und Angst können erst dadurch Gegensätze sein, weil sie etwas gemeinsam haben, d.h. Emotionen sind (Gl. 3); Kontraktion verwandelt sich in Expansion, weil sie ein Teil der Pulsation ist (Gl. 4).

Bei homogenen Gleichungen sind die beiden voneinander getrennten Funktionen also nur durch die zugrundeliegende Kontinuität miteinander verbunden. Heterogene Gleichungen (Gl. 5) vermitteln zwar den Eindruck, daß die Kontinuität bereits in der Transformation von der einen Funktion in die andere enthalten ist, so daß es wie ein perfektes Beispiel für Kausallität aussieht, doch auch hier ruht die Kontinuität auf dem zugrundeliegenden Funktionsprinzip. Man nehme etwa die Umwandlung von aufgenommener Nahrung (Materie) in Energie: ohne den lebendigen (von der pulsierenden Orgonenergie belebten) Organismus wäre diese Transformation nicht denkbar. Auch im Reagenzglas muß vorher durch Mischung der Ingredienzen, durch Katalysatoren, Wärmezufuhr, etc. „künstlich“ ein energetisches Gefälle errichtet werden, damit die biochemischen Prozesse ablaufen. Ohne orgonotische Pulsation keine Transformation, die nichts anderes ist als Expansion (wenn sich Materie in Energie oder etwa Schmerz in Kitzel umwandelt) bzw. Kontraktion (wenn aus Energie Materie und aus Kitzel Schmerz wird).³

Wie die tieferliegenden Funktionsprinzipien (CFPs) ihre oberflächlicheren Funktionsvarianten beeinflussen, wird besonders plastisch, wenn man die Übergänge zwischen heterogenen Funktionen, etwa zwischen seelischer Gesundheit und seelischer Krankheit (bzw. umgekehrt), mit Hilfe von homogenen Gleichungen in einzelne Abschnitte unterteilt (Konia 1996):

In der Gesundheit sind Abwehr und Trieb bloße Varianten, d.h. daß der Gesunde, wenn es die Umstände verlangen, in der Lage ist, einen Trieb abzuwehren, während er sich bei einer Veränderung dieser Umstände hemmungslos gehen lassen kann:

³ Natürlich wandelt sich im Organismus nicht Masse in Energie um, sondern potentielle Energie, die Energie der chemischen Bindungen, in freie kinetische Energie. Im 5. Abschnitt kommen wir darauf zurück. Dort wird auch die Abhängigkeit heterogener Funktionsvariationen von ihrem CFP weiter herausgearbeitet werden.
Beim gehemmten neurotischen Charakter, also dem „Normalen“, halten sich Abwehr und Trieb gegenseitig in Schach, es kommt zu einem „neurotischen Gleichgewicht“ mit einem entsprechend stereotypen, „situationsunabhängigen“ Verhalten:

Beim Zusammenbruch der Panzerung kommt es, – so als handelte es sich um eine Karikatur der gesunden organismischen Pulsation –, zu einem ständigen Hin und Her, sowohl im Verhalten als auch in den physiologischen Reaktionen. Beim triebhaften Charakter ist das ein Dauerzustand:

Anhand der Gleichungen Gl. 6 bis Gl. 9 sieht man, daß, wenn sich im Verlauf des Lebens oder einer Therapie das CFP verändert, gleichzeitig auch die Art der Beziehung zwischen den Funktionspaaren ändert. Die Art der Paarbeziehung kann bei Änderung des CFP aber auch gleich bleiben, während die Partner wechseln. Das ist beispielsweise bei den Emotionen der Fall:
<table>
<thead>
<tr>
<th>CFP:</th>
<th>1. Funktion:</th>
<th>2. Funktion:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wut</td>
<td>Angriff</td>
<td>Abwehr</td>
</tr>
<tr>
<td>Angst</td>
<td>Rückzug</td>
<td>Abwehr</td>
</tr>
<tr>
<td>Trauer</td>
<td>Rückzug</td>
<td>Passivität</td>
</tr>
<tr>
<td>Sehnsucht</td>
<td>Hingabe</td>
<td>Passivität</td>
</tr>
<tr>
<td>Lust</td>
<td>Hingabe</td>
<td>Aktivität</td>
</tr>
</tbody>
</table>

In der Therapie könnte beim Abtragen der Panzerung beispielsweise in obiger Reihenfolge eine Emotion nach der anderen auftauchen: eine zur Schau getragene Wut (Expansion) überspielt nur die Angst (Kontraktion), diese geht in Trauer um ein verpfuschtés Leben über, diese in Sehnsucht (erneute Expansion) nach einem neuen Leben und diese schließlich, nachdem sich der Patient hat fallen lassen, in die Lust an der neu gewonnen Freiheit.

Prozesse, wie die in Gl. 6 bis Gl. 9 und in Abb. 4 beschriebenen, lassen sich mit folgender heterogener Gleichung beschreiben:

\[x \rightarrow y \rightarrow z \rightarrow a \rightarrow \text{etc.} \]

Gl. 10

I.3. Entwicklungsgleichungen

I.3.a. Enwicklung

Ich weiß nicht, ob Reich bei \(\int \) auch an das Zeichen für „Integration“ (vgl. Reich 1950d, S. 168), wie es in der Infinitesimalrechnung verwendet wird, d.h. das auf Leibniz zurückgehende Integralzeichen, das „lange s“ für „Summe“, gedacht hat. Dort symbolisiert es das Schließen von den Teilen auf das Ganze (lateinisch\(\text{integer} \)). Sicher ist, daß es in Funktionsgleichungen für „funktionell“ steht (Meyerowitz 1994) und auf das zugrundeliegende CFP verweist, von der die beiden miteinander in Bezug gesetzten Funktionen nur Varianten sind. Wird als dritter Faktor das CFP ausdrücklich genannt, erweitert sich die Dichotomie zur Trichotomie und die Funktionsgleichung (hier Gl. 1 bis Gl. 4, das gleiche würde natürlich auch für Gl. 5 gelten) verwandelt sich in eine \emph{Entwicklungsgleichung}:

\begin{align*}
\text{A1} & \quad \text{Gl. 11} \\
\text{A2} & \\
\end{align*}

\begin{align*}
\text{subjektives funktionelles, logisches Denken} & \\
\text{Naturprozesse} & \quad \text{Gl. 12} \\
\text{objektive, funktionelle Logik der Orgonenergie} & \\
\end{align*}

Entsprechend dieses Parallelismus von Denken und Sein kann man organometrische Gleichungen in jedem „denkbaren“ Bereich anwenden.

Als Beispiel nehme man die verschiedenen Funktionsebenen des Körpers vom Zellwachstum, über Anatomie und Physiologie bis zu den Empfindungen. Im einzelnen stellen sich die unterschiedlichen Arten von Entwicklungsgleichungen wie folgt dar:
Entwicklungsgleichungen, die einen Bereich beschreiben, in dem sich das primordiale Funktionieren der masselosen kosmischen Orgonenergie nahtlos fortsetzt, was man daran sieht, daß die Funktionen nicht oder nur schwer zu unterscheiden sind. Man denke an Elementarteilchen oder an lebende Zellen:

\[\text{Zelle} \xrightarrow{\text{Tochterzelle 1}} \text{Tochterzelle 2} \]
\[\text{Gl. 13} \]

Entwicklungsgleichungen, die einen Bereich beschreiben, in dem primordiale Prozesse Struktur werden. Hier wiederholt sich, wie etwa beim Baum, auf allen Größenebenen die grundlegende bifurkative Struktur, die neuerdings mit Hilfe der „fraktalen Geometrie“ beschrieben wird. Man denke etwa an das Nervensystem:

\[\text{Parasympathikus} \xrightarrow{\text{vegetatives Nervensystem}} \text{Sympathikus} \]
\[\text{Gl. 14} \]

Entwicklungsgleichungen, die die Bestandteile des einheitlichen Funktionierens beschreiben. Erinnert sei an Funktionsschemata, etwa von Kreisläufen in einem Kraftwerk, oder an folgendes Beispiel:

\[\text{Atmung} \xrightarrow{\text{Ausatmen (Expansion)}} \text{Einatmen (Kontraktion)} \]
\[\text{Gl. 15} \]

Entwicklungsgleichungen, die das innere Erleben beschreiben. Anläßlich von Abb. 3 haben wir bereits den funktionellen Zusammenhang diskutiert. Greifen wir von dort ein Element heraus (j, g und h), stellt es sich orgonometrisch wie folgt dar:
Entwicklungsgleichungen lassen sich nach folgendem Muster (jedenfalls potentiell) unendlich fortführen (vgl. Gl. 11):

In derartigen Fällen könnte man sogar folgende Gleichung formulieren:

Das CFP ist hier sozusagen ein „reihenbildendes Prinzip“ für eine arithmetische oder geometrische Abfolge der natürlichen Zahlen:
Früher oder später müssen jedoch auch theoretisch „unendliche Entwicklungsgleichungen“ wie Gl. 17 enden, einfach weil die Zeit und der Raum begrenzt sind, in denen sich das jeweilige CFP entfalten kann. Ohnehin ist Unendlichkeit eher eine (wenn nicht die) mathematische, quantitative Kategorie und weniger eine orgonometrische, qualitative Kategorie. Das kann man sich anhand eines großen Stückes Kuchen vergegenwärtigen, das durch fortgesetzte Aufteilung „vermehrt“ wird, bis man (jedenfalls theoretisch) bei den ununterscheidbaren Elementarteilchen und schließlich bei der einheitlichen Orgonenergie angelangt ist. Mit den Einzellern (Gl. 13) ist das nur bei oberflächlicher Betrachtung anders bestellt, denn die nehmen mit ihrer Ausbreitung immer mehr Orgonenergie in sich auf. Im Universum wird das sich „unendlich“ ausbreitende Licht von der kosmischen Orgonenergie „verschluckt“ (siehe Überlagerung und Teilung in galaktischen Systemen www.orgonomie.net/hdoastro.htm). Hierher gehört das Prinzip des „Umschlagens von Quantität in Qualität“, das für Engels’ Dialektischen Materialismus von zentraler Bedeutung war (Engels 1925). (Auf das Problem der mathematischen Unendlichkeit werden wir im Kapitel III zurückkommen.)
I.3.b. Erkenntnis

Eine zweite Gruppe von Gleichungen enden sehr bald. Diese Gleichungen, zu denen auch Gl. 15 und Gl. 16 gehören, sind entweder prinzipiell nicht fortzuführen, was besonders an den „vollständigen Entwicklungsgleichungen“ evident wird (mehr dazu im 5. Abschnitt), oder aus dem praktischen Grund, daß es keine sinnvoll zu formulierenden Funktionen mehr gibt, mit deren Hilfe man ein Ganzes differenzieren könnte. Zum Beispiel kann vom CFP „Zelle“ sowohl eine einfache Entwicklungsgleichung wie Gl. 13 ausgehen, die potentiell unendlich ist, aber auch eine „urteilende“ Gleichung, wie die folgende:

\[\text{Zellkern} \quad \text{Zelle} \quad \text{Zellkörper} \]

An sich können ausschließlich Genitale Charaktere „urteilende“ orgonometrische Gleichungen formulieren (– eine Forderung, die bis auf weiteres leider illusorisch bleiben muß), denn derartige Gleichungen stellen das Setzen von Beziehungen, d.h. das „Ur-Teilen“, dar, wobei mathematisch nicht erfaßbare Erfahrungsmomente hineinspielen. Entsprechend scheinen sie in ihrer Struktur durchweg einem „psychosomatischen“ Grundmuster zu folgen. Dazu müssen wir etwas weiter ausholen:

Betrachtet man alle bisher formulierten Entwicklungsgleichungen, stellt sich die Frage, was eigentlich die Lage der beiden vom jeweiligen CFP rechts stehenden Funktionsvarianten bestimmt. Ist es gleichgültig, ob die eine oben oder unten steht? Im Prinzip ja (etwa bei Gl. 13), doch sollte man, so weit es irgend möglich ist, orgonometrische Gleichungen nach dem Muster der ersten Entwicklungsgleichung, die jemals formuliert wurde, gestalten.

Reichs „bio-elektrischen Experimenten“ von 1935 lag das folgende Diagramm zugrunde:
Da diese schematische Formulierung des Orgonomischen Funktionalismus zu sperrig ist, drückte Reich das gleiche Anfang der 1940er Jahre wie folgt aus (siehe auch Gl. 12 und Gl. 19):

Wenn man davon ausgeht, daß die Psyche für die Gesamtfunktion des Organismus steht, das Soma für die Teilfunktionen, wird deutlich, nach welcher Logik die Entwicklungsgleichungen (soweit es irgendwie paßt) in dieser Arbeit niedergeschrieben werden: frei nach Reichs Aufstellungen (z.B. Reich 1937, S. 41 und S. 53) stehen

Psyche, Energie, Expansion, Welle, Mystizismus, Qualität, etc.,
gegen

Soma, Masse, Kontraktion, Impuls, Mechanismus, Quantität, etc.

Die Funktionsgleichungen werden entsprechend dem oberen Teil von Abb. 7 formuliert. Bei heterogenen Funktionsgleichungen funktioniert das natürlich nicht, wodurch ihre Sonderrolle erneut deutlich wird. (Ohne unser „rigides“ Ordnungsschema wären wir auf dieses Unterscheidungskriterium zwischen homogenen und heterogenen Funktionsvarianten gar nicht gestoßen!)
Scheinbar gibt es Gleichungen, die sich nicht in das Grundmuster Gl. 20 einfügen wollen, obwohl sie etwas anderes darstellen als die bloße Entfaltung der Orgonenergie. Man nehme etwa folgendes Beispiel:

\[
\text{Ökosystem} \quad \begin{array}{c} \text{Fuchspopulation} \\ \text{Waldwiese} \\ \text{Kaninchenpopulation} \end{array} \quad \text{Gl. 21}
\]

Die beiden wichtigsten Gründe für die Ordnung der Funktionen nach dem Schema von Abb. 7 und Gl. 20 sind:

1. kann man aufgrund dieses Ordnungsprinzips verschiedene Gleichungen untereinander leichter vergleichen und so übergreifende Ordnungsmuster erkennen; und

I.3.c. CFP und Begriff

Wie Reich im letzten Kapitel von Die kosmische Überlagerung dargelegt hat, steckt in diesem Bewußtwerdungsprozeß die Gefahr, sich hoffnungslos zu verrennen. Entsprechend vorsichtig muß mit organometrischen Gleichungen umgegangen werden. Will man also seine Konzepte ordnen, sollte man das tunlichst nicht als Entwicklungsgleichung tun, sondern nur als bloße schematische Aufstellung. Trotzdem kann ein solches Schema wie eine organometrische Gleichung aussehen:
Manchmal ist eine derartige Aufstellung sogar direkt in eine organometrische Gleichung übertragbar. Aus Abb. 8 läßt sich jedoch keine Entwicklungs-gleichung machen, da Entwicklungs-gleichungen ausschließlich von Funktions-prinzipien ausgehen dürfen, die, wie im 1. Abschnitt ausgeführt, Funktionen äquivalent sind, nie von bloßen Konzepten oder Begriffen (wie etwa „Obst“).

Um sich den Unterschied zwischen greifbaren Funktionen und bloßen Konzepten der Gedankenwelt zu verdeutlichen, kann man eine „Menge“ bilden: Eine Menge von drei Stühlen ist kein Stuhl, also hat man es mit konkreten Funktionen zu tun. Die Menge von drei Zahlen jedoch ist wieder eine Zahl: es handelt sich um bloße Konzepte. Eine Menge von fünf Geschwisterpaaren ist kein Geschwisterpaar, aber eine Menge von fünf Gruppen ist wieder nur eine Gruppe. Ein Gramm Salz plus ein Gramm Salz sind zwei Gramm Salz. Jedoch: eine Salzmenge plus eine Salzmenge macht wiederum nur eine Salzmenge. Man könnte auch sagen, daß bei „1 g Salz + 1 g Salz = 2 g Salz“ quasi eine funktionelle Transformation nach dem Muster von Gl. 5 stattfindet: 1 + 1 → 2, bei „1 Salzmenge + 1 Salzmenge = 1 Salzmenge“ jedoch nicht. (Dieser Punkt wird im 5. Abschnitt bedeutsam werden!)

Was wäre dann das CFP von „Kirsche und Pflaume“? Zunächst ist hervorzuheben, daß es keinen Sinn macht, beliebige Elemente aus der Umwelt herauszuziehen und nach deren CFP zu suchen. Etwa nach dem Muster: „Was ist das CFP eines Teppichs und einer Wolke?“ Abgesehen davon, daß die Orgonenergie das CFP von allem ist (eine inhaltsleere – und im grunde mystische Aussage, vgl. Abb. 21), gibt es in diesem Fall kein spezifisches CFP.

„Kirsche und Pflaume“ ist eine nicht gar so abwegige Zusammenstellung, denn es könnte durchaus ein Gärtner in einem konkreten Zusammenhang vor die Frage gestellt sein, was deren CFP ist. Um dieses CFP zu ergründen, müßte er sich mit Botanik beschäftigen, bzw. dem Stammbaum der Pflanzen, und würde dann vielleicht zu folgender, wohl noch immer provisorischen, aber vom Prinzip her doch sinnvollen organometrischen Gleichung gelangen:

Wenn Gl. 22 überhaupt eine orgonometrische Gleichung ist, dann sicherlich keine „urteilende“ Entwicklungsgleichung wie Gl. 21, sondern eine Entwicklungsgleichung der ersten Art, d.h. eine, die unmittelbar die Entfaltung der Orgonenergie widerspiegelt. Das wird auch dadurch nahegelegt, daß „Kirsche und Pflaume“ eine einfache Variation darstellen (Gl. 1), während wir es etwa bei „Fuchspopulation und Kaninchenpopulation“ (Gl. 21) mit einem einfachen (sich gegenseitig anziehenden, d.h. hier voneinander abhängigen) Gegensatzpaar (Gl. 2) zu tun haben.

I.4. Schöpfungsgleichungen

I.4.a. Liebe, Arbeit und Wissen

Aus der kosmischen Orgonenergie (dem CFP N, das allumfassende Naturgesetz, sozusagen das „Urprinzip“) gehen einfache homogene Varianten (V), etwa zwei Orgonenergie-Ströme (x und y) hervor, die sich, anders als bei einfachen Entwicklungsgleichungen, spontan, d.h. ohne Veränderung des CFP N, in einfache Gegensätze umwandeln und sich dergestalt anziehen und überlagern. Als Resultat der Überlagerung wird eine vollkommen neuartige Funktion erschaffen (A1), die am Anfang neuer Entwicklungsprozesse steht. Mit Gl. 23 können wir auch eine Lücke in den bisherigen Ausführungen schließen, denn die Eizelle (A1), aus der der Organismus durch Bifurkation hervorgegangen ist, war vorher eine unbefruchtete Eizelle (y), die durch eine Samenzelle (x) befruchtet werden mußte.

Naturgesetze wuchsen die Mittel der Rückwirkung auf die Natur; die Hand allein hätte die Dampfmaschine nie fertiggebracht, hätte das Gehirn des Menschen sich nicht mit und neben ihr und teilweise durch sie korrelativ entwickelt. (Engels 1925, S. 322f)

Das führt uns im Rückgriff auf unsere „Grundgleichung“ Gl. 20, und eine entsprechende Gleichung bei Jacob Meyerowitz (Meyerowitz 1994, S. 147), zu folgender Schöpfungsgleichung:

\[
\text{lebendige Arbeit} \quad \text{BIO-ENERGIE} \quad \text{Hand (Tätigkeit)} \quad \text{SOMA} \quad \text{Arbeitsprodukt}
\]

Frei nach Marx (Marx 1867, S. 148f) beschreibt Gl. 24 die Wertschöpfung und damit die Grundlage unseres gesellschaftlichen Lebens.⁴

Was schließlich den Bereich des Wissens, die „Wissen-Schaft“, anbetrifft: sie ist eine Funktion des orgonotischen Kontaktes, der, wie im 2. Abschnitt bereits angedeutet, mit folgender Schöpfungsgleichung beschrieben wird:

\[
\text{Wahrnehmung} \quad \text{Kontakt} \quad \text{Erregung}
\]

Diese Gleichung fällt aus dem Rahmen der Schöpfungsgleichung Gl. 23, weil „Wahrnehmung“ und „Erregung“ keine homogenen Funktionen sind, die sich überlagern könnten und außerdem ist „Kontakt“ keine greifbare Funktion, sondern ein Konzept, das durch das Zusammenspiel der beiden Funktionen definiert ist. Tatsächlich kommt es beim Kontakt von Erregung und Wahrnehmung zu einer Anregung der orgonotischen Strömung. Im folgenden wird deutlich werden, warum hier auf die Nennung des CFP verzichtet werden mußte. (Das CFP N einer entsprechenden vollwertigen Schöpfungsgleichung wäre „orgonotische Strömung“ gewesen, entsprechend dem „m“ in Abb. 3.)

I.4.b. Gedankengleichungen

Die Orgonometrie hat sich bei Reich langsam entwickelt und sie macht bis heute konstant Fortschritte (Meyerowitz 1994). Es ist unvermeidlich, daß ein solcher Arbeitsprozeß einige Ungereimtheiten hinterläßt. Zum Beispiel gibt es, wie im 2. Abschnitt bereits angeschnitten, in älteren Texten Reichs, die er vor seinem einführenden Aufsatz in die Orgonometrie geschrieben hatte (Reich 1950d), Funktionsgleichungen, die wie ein antagonistischer Gegensatz (Gl. 3) aussehen, aber eindeutig einen alternierenden Gegensatz (Gl. 4) kennzeichnen sollen. Ähnliche Probleme finden sich bei Entwicklungsgleichungen, die Reich manchmal „falsch herum“ (d.h. > statt <) niedergeschrieben hat, was unmittelbar seine Suche nach dem CFP wiedergibt. Damit sehen diese Gleichungen wie Gl. 25 aus, also wie etwas, was ich als „Gedankengleichung“ bezeichne. Jacob Meyerowitz hat diese Ungereimtheit aus der Orgonometrie beseitigt (Meyerowitz 1994). Nur unter dieser Voraussetzung ist das folgende nachvollziehbar:

Eine derartige „Gedankengleichung“ könnten wir beispielsweise aus Abb. 8 ableiten:

Kirschen

Pflaumen

der Begriff “Obst” Gl. 26

Mit dem problematischen Verhältnis von Entwicklungsgleichung (Gl. 22) und „Gedankengleichung“ (Gl. 26) sind wir beim wohl größten technischen Problem der

5 Diese beiden Arten des Denkens werde ich in Kapitel II mit dem Zergliedern und dem Zusammenfassen in Zusammenhang bringen.

![Diagramm Abb. 9](attachment:diagram1.png)

![Diagramm Abb. 10](attachment:diagram2.png)

Wir denken sozusagen gegen die Natur an.

Mit diesen technischen Schwierigkeiten hängt zusammen, daß es nur allzu verlockend ist, „Gedankengleichungen“ mit entsprechenden Entwicklungsgleichungen zu einer Schöpfungsgleichung zu komplettieren. Nehmen wir folgendes Beispiel:
Fuchspopulation

Ökologisches Gleichgewicht

Kaninchen-Population

Gl. 27

Es ist naheliegend Gl. 27 zu erweitern, indem man ihr Gl. 21 sozusagen „vorschaltet“. Doch Fuchspopulationen und Kaninchenpopulationen gehen nicht als primäre Varianten aus einer „Waldwiese“ hervor, „überlagern“ sich nicht (obwohl sie einfache Gegensätze sind) und setzen vor allem keine Konzepte in die Welt! Vielmehr beschreibt Gl. 27 das zusammengehen der Gedanken („These“ und „Antithese“) eines Biologen, der so zu einem umfassenderen Konzept („Synthese“) gelangt.

I.5. Vollständige Gleichungen

I.5.a. Qualität und Quantität

Leider müssen wir bei den „vollständigen Gleichungen“ (Reich 1951d) noch etwas mehr abschweifen, als wir es ohnehin schon getan haben. Das will nicht zu einer „Einführung“ passen, ist aber bei vollständigen Gleichungen erst recht unvermeidlich, da hier mehr berücksichtigt werden muß, als bei den bisher diskutierten denkbar einfachen „unvollständigen Gleichungen“. Ohnehin ist es unmöglich, eine rein formale „Einführung in die Orgonometrie“ zu schreiben, denn Orgonometrie ist konkret – oder gar nicht.

Der Hauptunterschied zwischen mathematischen und orgonometrischen Gleichungen liegt darin, daß sich die ersteren stets sauber nach Null hin auflösen lassen: \(a \cdot b - a \cdot b = 0\). Das ist so, weil von allen unverwechselbaren Qualitäten abgesehen wird und die Funktionen auf ihre austauschbaren, d.h. rein quantitativen Eigenschaften reduziert werden. Wegen dieser Nivellierung sind mathematische Gleichungen im grunde Tautologien nach dem Muster
a \cdot b = a \cdot b. Sie gewinnen erst dann Bedeutung, wenn im Nachhinein die qualitativen Unterschiede wieder hinzugefügt werden.6

\[a \cdot b \]

Diese Art von Gleichungen werden vor allem im Bereich der Physik angewendet, wobei wir im Anschluß an Reich mit dem „Dimensionsprodukt“ im „Dimensionssystem Lmt“ (L Länge, m Masse, t Zeit) operieren, was im Kapitel IV eingehender erläutert werden wird. Bereits in der Schulphysik dient das Dimensionsprodukt dazu, die physikalischen Größen qualitativ zu beschreiben. Doch dabei gehen Aspekte des physikalischen Charakters der betreffenden Größe verloren, weshalb wir hier eine Mischung aus Dimensionsprodukt und den gängigen physikalischen Gleichungen verwenden, was in der Schulphysik nicht üblich ist.

Setzen wir in Gl. 28 mechanisch die allgemeine Formel für Energie ein, wie sie z.B. im berühmten „E = m \cdot c^2“ zum Ausdruck kommt, ergibt das kaum mehr als höheren Unsinn (E steht für Energie, m Masse, c Lichtgeschwindigkeit, v allgemein für Geschwindigkeit):

\[E = m \cdot c^2 \]

6 Mathematische Gleichungen sind dann korrekt, wenn das wieder herauskommt, was man vorher hineingesteckt hat, während orgonometrische Gleichungen ganz im Gegenteil nur dann richtig sind, wenn sie zu grundsätzlich neuen, unerwarteten Ergebnissen führen.

www.orgonomie.net
Entsprechend möchte ich mit dem Zeichen „‖“, zu dem mich ein Aufsatz aus Reichs *Orgone Energy Bulletin* inspiriert hat (Kelley 1952), andeuten, daß diese Gleichung nicht nur provisorisch ist, sondern (anders als etwa die provisorische Gleichung Gl. 22) *auf keinen Fall* mit einer vollwertigen organometrischen Gleichung verwechselt werden darf. (Ohne dieses Zeichen könnte das rasche Überfliegen einer organometrischen Abhandlung recht verwirrend und desorientierend sein! Natürlich ist das Zeichen bei *allen* organometrischen Gleichungen, nicht nur bei vollständigen, anwendbar.)

Die „aufgespaltene“, organometrische Darstellungsweise mathematischer Gleichungen erlaubt es, ihren *funktionellen* Inhalt zu entschlüsseln. In unserem Beispiel wäre dies:

Hier wird dem Impuls p ($m \cdot v = p$) eine bestimmte Geschwindigkeit v zugeordnet. Aus schulphysikalischer Sicht mag diese Aufstellung nicht viel Sinn machen, aber sie hat, wie wir im folgenden sehen werden, gleich einen doppelten *orgon-physikalischen* Sinn.

I.5.b. Bewegungsenergie und Lageenergie

Es gibt verwirrend viele Energiearten, und es ließen sich beliebig viele weitere definieren, die sich jedoch (wenn wir von der erwähnten Energie der Ruhemasse $E = m \cdot c^2$ absehen – siehe dazu Hans Hass und der energetische Funktionalismus www.orgonomie.net/hdomath.htm) auf nur zwei reduzieren lassen: kinetische Energie (Bewegungsenergie) und potentielle Energie (Lageenergie). Sie machen jeweils die Hälfte der Gesamtenergie eines Systems aus. Abgesehen davon, daß man den Ausdruck $m \cdot v^2$ durch 2 teilen müßte, wird die Bewegungsenergie durch Gl. 30 beschrieben.
Mittels der vollständigen orgonometrischen Gleichung Gl. 31, die, wie im Kapitel IV erläutert werden wird, die Umwandlung der Dimension Masse m in die Dimension Länge L beschreibt, läßt sich das auf die massefreie kosmische Orgonenergie übertragen:

\[m \rightarrow L \]
Gl. 31

\[L \cdot c^2 \rightarrow L \cdot c \]
Gl. 32

Hinter der mechanischen Energie steht letztendlich die orgonotische Kreiselwelle (KRW), d.h. die Bewegung (c, für Bewegung im primordialen Bereich) von orgonotischen Pulsen \(p = L \cdot c \) (Reich 1951d, S. 70; Reich 1957b). Hier in Vorderansicht (oben, Wechsel von Expansion und Kontraktion) und Seitenansicht (unten, Wechsel von Welle und Schleife):

Abb. 11

Das bedeutet, daß sich die kosmische Energie, und damit alle Formen von Energie, mittels der homogenen Gleichung Gl. 33 beschreiben läßt:
Die orgonometrische Beschreibung der *potentiellen Energie* (wobei wir vom einfachsten Fall, nämlich einem konstanten Kraftfeld, ausgehen und wieder vom Faktor 2 absehen) ähnelt zunächst Gl. 30, in der die kinetische Energie beschrieben wird (m Masse, g Beschleunigung in einem Kraftfeld, L Distanz):

\[m \cdot g \cdot L \]

Um den *funktionellen* Unterschied zwischen den beiden Energiearten festmachen zu können, müssen wir die Größen \(v \) und \(m \cdot v = p \) vollständig in ihre dimensionalen Bestandteile auflösen und gelangen dann, wie im Kapitel IV erläutert werden wird, von der Geschwindigkeit \(v \) zur Spannung \(U \) und vom Impuls \(p \) zur Ladung \(Q \):

\[v \Leftrightarrow \frac{L}{t} \Leftrightarrow U \]

\[p \Leftrightarrow \frac{L^2}{t} \Leftrightarrow Q \]

Das führt schließlich zur folgenden unvollständigen Entwicklungsgleichung:

\[\text{ein Spannungsfeld, \ldots} \]

\[\text{potentielle} \]

\[\text{Energie} \]

\[\text{\ldots das von einer Ladung aufgebaut wird} \]

\[\text{Gl. 37} \]
Kinetische Energie ist also letztendlich die Bewegung von orgonotischen Impulsen (Abb. 11), potentielle Energie die orgonotische Spannung, die von orgonotischen Ladungen aufgebaut wird (Gl. 37).

In der Schulphysik wird die kinetische Energie als Bewegung von Körpem (Massen) definiert. Daß dies aus funktionaler Sicht nicht viel Sinn macht, wird ersichtlich, wenn man etwa einen Apfel im (letztendlich orgonotischen) Schwerefeld der Erde hochhebt und dergestalt die Spannung zwischen den beiden orgonotisch geladenen Körpfern Apfel und Erde vergrößert, d.h. dem Apfel potentielle Energie verleiht. Läbt man den Apfel wieder los, verwandelt sich seine Ladung Q in ihre funktionelle Entsprechung Impuls p (Gl. 40), wobei sich die zwischen den beiden Körpem Apfel und Erde bestehende Spannung U in ihre funktionelle Entsprechung Bewegung v umwandelt (Gl. 39): kinetische Energie ist die Bewegung von Ladungen Q = Impulsen p.

Hinter der nichtssagenden Transformation Gl. 38, die den Übergang von potentieller Energie in kinetische Energie beschreibt, verbergen sich demnach die bedeutungsvollen Transformationen Gl. 39 und Gl. 40:

\[
\begin{align*}
\text{Lageenergie} & \quad \rightarrow \quad \text{Bewegungsenergie} \\
U & \quad \rightarrow \quad v \\
Q & \quad \rightarrow \quad p
\end{align*}
\]

Gl. 38, Gl. 39, Gl. 40

Die beiden Gleichungen Gl. 39 und Gl. 40 gemahnen an Friedrich Kraus' „Nässetheorie des Lebens“, die am Anfang von Reichs Weg in die Biophysik stand (Reich 1937). Gleichzeitig reihen sie Reichs ersten Ansatz in einen größeren Rahmen ein, denn auf Gl. 38, das Speichern und Freiwerden von Energie (Bewegung), beruht auch aus rein schulphysikalischer Sicht unsere Existenz sowohl als Naturwesen als auch als zivilisierte Menschen in einer technologischen Umwelt.

Gl. 38 beinhaltet noch mehr: sie umfaßt den kompletten Bereich der sekundären Energie, deren primordialen Kern wir mit Abb. 11 und Gl. 37, Gl. 39 und Gl. 40 freigelegt haben, d.h. das CFP von kinetischer und potentieller Energie ist die primäre Energie. Es ist, wie bereits im 2. Abschnitt angedeutet, die pulsierende Orgonenergie (Gl. 33), die den ständigen Wechsel von kinetischer und potentieller Energie antreibt. Demnach gibt es weder eine Unzahl von Energien noch derer zwei oder drei, sondern nur eine Energie (die kosmische Orgonenergie), die sich potentiell unendlich differenziert.
I.5.c. Die Rolle des CFP in vollständigen Gleichungen

Die vollständige Funktionsgleichung Gl. 41 gesellt sich zu den homogenen (Gl. 1 bis Gl. 4) und heterogenen (Gl. 5) Funktionsgleichungen:

\[x \int y \quad \text{Gl. 41} \]

Nicht etwa trotz, sondern wegen des quantitativen (mathematischen) Aspekts entspricht Gl. 41 weitgehend Gl. 1. Das wird, eingedenk Gl. 18, durch die ungewöhnlichen Gleichungen Gl. 35 und Gl. 36 unterstrichen, die allgemein formuirt folgende Gestalt haben:

\[x \int y \int z \quad \text{Gl. 42} \]

Da Quantitäten stets nur einfache Varianten des CFP sein können, ließe sich diese Gleichung mit a, b, c, etc. „unendlich“ fortführen (vgl. Gl. 18 sowie Abb. 5, Abb. 6 und die daran anknüpfenden Erläuterungen).

Weitaus wichtiger ist jedoch, daß alle vollständigen Funktionsgleichungen Prozesse beschreiben und Prozesse können ebenfalls, wie in Gl. 10, mit vielen hintereinander geschalteten Integrationszeichen beschrieben werden, weil sie von einem CFP bestimmt werden. Vollständige Funktionsgleichungen haben also nicht nur den Charakter homogener Gleichungen (einfache Varianten), sondern vor allem die Eigenschaften heterogener Gleichungen – deshalb auch die unterschiedlichen Buchstaben in Gl. 41 und Gl. 42, entsprechend Gl. 5. Das bedeutet, daß vollständige Funktionsgleichungen, anders als die ihnen entsprechenden mathematischen („tautologischen“) Gleichungen, in eine bestimmte Richtung weisen. Aus diesem Grund ist es nicht möglich, wie in der Mathematik üblich, eine Gleichung wie Gl. 31 einfach umzukehren (genauso wenig wie man Gl. 5 einfach anders herum schreiben könnte!):

\[L \int m \quad \text{Gl. 43} \]
Diese Gleichung ist in bestimmten Zusammenhängen zwar korrekt, bedeutet aber etwas vollkommen anderes als Gl. 31! Gl. 31 beschreibt den Übergang vom materiellen in den energetischen (masselosen) Bereich (Expansion), Gl. 43 das genaue Gegenteil (Kontraktion). Entsprechend beschreibt Gl. 35 (Kontraktion) das Gegenteil von Gl. 39 (Expansion). Das gleiche gilt für Gl. 36 und Gl. 40.

Die Behauptung, daß vollständige Funktionsgleichungen grundsätzlich nicht nur einen homogenen, sondern vor allem einen heterogenen Charakter haben, wird unmittelbar einsichtig, wenn man ein Beispiel aus dem Tauschhandel nimmt. Sagen wir, der eine der Tauschpartner erhält 1 Pferd für 10 Schafe, sein Gegenüber entsprechend umgekehrt. 1 Pferd ist hier gleich 10 Schafen, was formal identisch ist mit 10 Schafen, die gleich 1 Pferd sind, doch funktionell, d.h. für die „Wirk-lichkeit“ jeweils des Gebers und des Nehmers sind das zwei vollkommen unterschiedliche „Transaktionen“ (die Transformation zwischen heterogenen Funktionen).

Bei diesem Beispiel haben wir es sowohl mit einer homogenen Variation zu tun (abstrakt sind 1 Pferd und 10 Schafe, sagen wir mal, jeweils 2000 EUR wert), die perfekt durch das Gleichheitszeichen der üblichen Mathematik ausgedrückt wird, und gleichzeitig auch mit einer heterogenen Umwandlung von 1 Pferd in 10 Schafe bzw. umgekehrt – eine Umwandlung, die den ganzen Vorgang erst motiviert!

Dieser Doppelcharakter des Vorgangs wird durch die vollständige Funktionsgleichung (Gleichheitszeichen plus Integrationszeichen) ausgedrückt und sofort offensichtlich, wenn wir versuchen, die vollständigen Funktionsgleichungen zu einer vollständigen Entwicklungsgleichung zu erweitern (vgl. Reich 1950d, S. 165):

![Diagramm]

1 Pferd
10 Schafe

(Gl. 44)

(Das Zeichen „□“ steht für eine unbekannte Funktion oder ein unbekanntes CFP [Meyerowitz 1994, S. 203].) Die 2000 EUR, die das 1 Pferd bzw. die 10 Schafe jeweils wert sind, sind nicht das CFP von Gl. 44, sondern der dritte Teil einer vollständigen Funktionsgleichung. Da nur 2000 EUR fließen (bzw. fließen würden, hätten wir es nicht mit Tauschhandel zu tun), wäre es auch sinnlos, als CFP 4000 EUR einzusetzen. Ohnehin ist das wirkliche CFP das, was die Heterogenität, d.h. die Motivation des Tauschvorgangs bestimmt: der (hier weiter zu spezifizierende) „gesellschaftliche Bedarf“, der auf die biologische Triebstruktur zurückgeht und daher zur Verzweiflung der Ökonomen nicht quantitativ erfaßbar oder gar „planbar“ ist – und deshalb unter keinen Umständen das CFP einer vollständigen Entwicklungsgleichung sein kann.
Im 2. Abschnitt haben wir gesehen, daß ein heterogener Gegensatz (Gl. 5) stets mit Pulsation verbunden ist, die die Transformation sozusagen antreibt. Pulsation wird aber mittels einer homogenen Gleichung (Gl. 4) beschrieben, wie im 5. Abschnitt am Beispiel von Bewegungsenergie und Lageenergie exemplifiziert wurde (Gl. 33). Aus diesem Grund kann dieses „veränderliche“ CFP in vollständigen orgonometrischen Gleichungen nur impliziert, aber nicht ausdrücklich genannt werden. Es sind also in diesem Fall grundsätzlich nur vollständige Funktionsgleichungen möglich.

Betrachten wir im Vergleich eine korrekte vollständige Entwicklungsgleichung:

100 Schafe
zur wirtschaftlichen Nutzung

\[\text{10 Schafe zum Verkauf} \]

\[\text{90 Schafe zur Wollgewinnung} \]

Durch die quantitativen Vorgaben ist das CFP hier statischer Natur, d.h. es geht um eine (im Rahmen der jeweiligen orgonometrischen Betrachtung) unveränderliche Größe, die in ihre funktionellen Komponenten zerlegt wird. Zwischen diesen notwendigerweise ebenfalls unveränderlichen Komponenten kann keine Transformation stattfinden. Deshalb können sie nicht in eine vollständige Funktionsgleichung überführt werden, sondern nur in eine unvollständige homogene Funktionsgleichung (hier antagonistischer Gegensatz, Gl. 3). Hinzu kommen die Gesetze der Mathematik: in Gl. 45 wären 10 Schafe zur Gewinnung von Wolle, oder eine andere quantitative Äquivalenz zwischen den beiden Funktionsvarianten, ein reiner Zufall.

Zusammengefaßt kann man sagen: vollständige Funktionsgleichungen führen zu unvollständigen Entwicklungsgleichungen und vollständige Entwicklungsgleichungen führen zu unvollständigen Funktionsgleichungen.

I.5.d. Die vier Grundrechenarten

\[
100 = 90 + 10
\]

Abb. 12

CFP Funktion 1 Funktion 2
Summe Summand 1 Summand 2

\[
90 = 100 - 10
\]

Abb. 13

Funktion 1 CFP Funktion 2
Differenz Minuend Subtrahend

Zwar läßt sich Gl. 45 umstandslos in eine Plusrechnung überführen, aber bei der komplementären Minusrechnung würden die funktionellen Komponenten der Gl. 45 heillos durcheinander geraten. Umgekehrt, bei der Umgestaltung einer Minus- zu einer Plusrechnung, würde natürlich das gleiche geschehen.

Bei der Plusrechnung (Abb. 12) sind die beiden Summanden austauschbar (sie bewegen sich auf derselben funktionellen Ebene), außerdem sind sie jeweils kleiner als die Summe. Bei der Minusrechnung sind die beiden funktionellen Ebenen (das CFP hier, die beiden Funktionsvariationen dort) ineinander verschränkt (Abb. 13): Minuend und Subtrahend sind nicht austauschbar, der Minuend ist (solange wir im Plusbereich bleiben) in jedem Fall größer als der Subtrahend und sogar größer als die Differenz. Entsprechendes gilt für die Punktrechnung und das Verhältnis von Multiplikation und Division.

Mit diesem Dilemma werden wir uns im Kapitel VII näher beschäftigen und dabei auf Abb. 3 zurückgreifen.
II. Orgonomischer Funktionalismus

II.1. Die organotische Strömung

II.1.a. Orgonotischer Kontakt

Wie sichert die Orgonomie dann die Objektivität des Forschungsprozesses? Durch Orgontherapie wird das Forschungsinstrument Mensch kalibriert!

Am Anfang der orgonomischen Forschung stehen Erregung und Wahrnehmung. Ihr Ursprung verweist auf das Ziel der orgonomischen Forschung und ihr Zusammenwirken verweist auf das Mittel dieser Forschung (vgl. Gl. 47 mit Gl. 25).

Wahrnehmung und Erregung sind heterogene Funktionen, die ineinander übergehen können:

Gl. 48 entspricht der Welt des Neurotikers (des „Nervösen“), bei dem Wahrnehmungen in, wie man so schön sagt, „Nervenspannung“ übergehen, Gl. 49 der des Psychotikers, bei dem Erregungen umstandslos in (Wahn-) Vorstellungen überführt werden. In beiden Fällen geht der orgonotische Kontakt verloren und der Zugang zur orgonotischen Strömung, allgemein zur Orgonenergie, ist verbaut.

Allgemein kann man sagen, daß in der gängigen universitären Wissenschaft Gl. 48 bestimmend ist, während Gl. 49 „alternative“ Ansätze („Spinner“) beschreibt.
II.1.b. Die funktionelle Identität von objektiven Vorgängen und subjektivem Erleben

Die folgende Gleichung (hier aus Gründen der Platzökonomie in drei Gleichungen aufgespalten!) stammt von Charles Konia (Konia 2000b). Gl. 51 ist eine Ergänzung, die weitgehend von mir stammt. Zu Gl. 50 siehe Gl. 46. Gl. 50-52 umfaßt den gesamten Forschungsbereich der Orgonomie. Gl. 52 beschreibt das, was man in der Natur und im Labor an orgonotischen Phänomenen objektiv beobachten kann, die quantitative Seite. Gl. 51 beschreibt das subjektive Innenleben eines Organismus, die „subjektive Seite“, sozusagen die „Innenseite“ der Orgonenergie, das Qualitative.

![Diagramm der Gleichungen 50-52]

Gl. 52 beschreibt die einzige Wissenschaft, die es für den Materialisten gibt, die Physik – und Gl. 51 beschreibt die einzige Wissenschaft, die es für den Erkenntniskritiker gibt, die Psychologie.
Vergleicht man alle sich entsprechenden Elemente dieser beiden Gleichungen nacheinander, verdeutlichen sie sich gegenseitig und ermöglichen so eine einheitliche Betrachtungsweise der Natur:

\[\text{Emotion} \quad \square \quad \text{Pulsation} \quad \text{Gl. 53} \]

\[\text{Sensation} \quad \square \quad \text{Kreiselwelle} \quad \text{Gl. 54} \]

Sensationen entsprechen der Kreisbewegung der Orgonenergie vom Steiß, den Rücken hinauf zum Hinterkopf und von dort die Vorderseite des Körpers hinab zum Genital. Am eindeutigsten tritt uns das in unserer Sexualität im allgemeinen und in der genitalen Umarmung im besonderen entgegen, die weder ein bloß geistiges Ereignis („Sex findet im Kopf statt!“), noch ein rein mechanisches ist, sondern ein kosmisches, wie Reich in Die kosmische Überlagerung (Reich 1951a) erläutert hat. Umgekehrt können wir die orgonotische Kreiselwelle (KRW) in der Natur nur dann wirklich würdigen, wenn wir sie selbst erfahren.

\[\text{Zusammenführen} \quad \square \quad \text{Anziehung} \quad \text{Gl. 55} \]

Zusammenführen ist die gedankliche Bewegung von den oberflächlichen Varianten zurück zum CFP. Es ist buchstäblich ein „Zug nach unten“. Der Mechanist wird empört oder belustigt fragen, was das Zusammenfassen mit einem rein physikalischen Phänomen wie etwa der Gravitation zu tun haben soll! Primärprozeßhafter könne man doch gar nicht denken! Tatsächlich handelt es sich um identische orgonotische Vorgänge, die alle Ebenen der Natur durchziehen. Charakteristischerweise wird von nicht-orgonomischer Seite gerne zur „Parapsychologie“ gegriffen, wenn man mit Phänomenen wie der Serialität bzw.

7 Orgonphysik ist nicht identisch mit „Ätherphysik“!
Synchronizität konfrontiert ist, bei der sich materielle Ereignisse „mental“ verhalten, d.h. separate Dinge „zusammengefaßt“ werden.

Unterscheiden → Erstrahlung

Gl. 56

Unterscheiden, also der gedankliche Weg vom tiefen CFP zu den Varianten, ist ein „Zug nach oben“. Auch dies ist, gegen alle Empörung bzw. allem Gespött der Mechanisten, funktionell identisch mit einem rein physikalischen Vorgang, dem der Erstrahlung, wie etwa dem Tageslicht („Orgonit“), das wiederum mit subjektiven „Bildern im Kopf“ funktionell identisch ist.

Fühlen → Bewegung

Gl. 57

Denken → Gleichzeitigkeit

Gl. 58

Die beiden Funktionen „Gleichzeitigkeit“ in Gl. 52 und „Denken“ in Gl. 51 kann man nur aneinander wirklich verstehen. Die gleichzeitige Wirkung, d.h. parallel erfolgende Aktivität ohne Bewegung von Ort A nach Ort B, ist wie das Denken bzw. das Bewußtsein, das keine räumliche Struktur kennt. Ich verweise zurück auf Kapitel I.1.c. Es passiert alles gleichzeitig, sei es im Bereich der subatomaren Wirkeinheiten (Quanten), bei unserem mentalen Funktionieren oder im einheitlichen Funktionieren von Galaxien, die 100 000 Lichtjahre groß sind (Harman 2004, S. 39).

Der Inhalt von Gl. 57 und Gl. 58 erschließt sich, wenn man sich überlegt, daß Denken („das Bewußtsein“) keine räumliche Trennung kennt, keine Bewegung von Ort A nach Ort B, Fühlen jedoch ohne Bewegung von orgonotischen Ladungen von Ort A nach Ort B undenkbar wäre.

II.1.c. Varianten der orgonotischen Strömung

Im vorangegangenen Abschnitt haben wir von der gesicherten auf Reich zurückgehenden Funktionsgleichung Gl. 53 auf fünf weitere Funktionsgleichungen geschlossen. Das gleiche können wir mit folgender Funktionsgleichung tun, die auf Konia zurückgeht (Konia 1998):

\[
\text{Kreiselwelle} \rightarrow \text{Pulsation} \quad \text{Gl. 59}
\]

\[
\text{Anziehung} \rightarrow \text{Erstrahlung} \quad \text{Gl. 60}
\]

\[
\text{Erstrahlung} \rightarrow \text{Anziehung} \quad \text{Gl. 61}
\]

Gleichzeitige Wirkung („Fernwirkung“), das CFP von Gl. 60 und Gl. 61, kann man sich vielleicht am ehesten anhand der Sonne vergegenwärtigen, die Reich anfangs als Quelle des Orgons betrachtete (Reich 1948). Newton hat gezeigt, daß die Gravitationskraft zwischen der Sonne und der Erde instantan erfolgen muß, um die Himmelsmechanik erklären zu können. Reich hat gezeigt, daß die Erstrahlung der Heliosphäre zeitgleich mit der der Erdatmosphäre erfolgt. Allgemein wandelt sich Anziehung in Erstrahlung um und Erstrahlung in Anziehung, wie es unmittelbar in der Liebe erfahren werden kann.

\[
\text{Sensation} \rightarrow \text{Emotion} \quad \text{Gl. 62}
\]

\[
\text{Emotion} \rightarrow \text{Sensation} \quad \text{Gl. 63}
\]

Die Transformationen Gl. 62 und Gl. 63 habe ich bereits in Kapitel I.2.b und in Die Massenpsychologie des Buddhismus (www.orgonomie.net/hdobuddha.htm) diskutiert. Ich brauche das hier nicht zu wiederholen.

\[
\text{Unterscheiden} \leftrightarrow \text{Zusammenführen} \quad \text{Gl. 64}
\]
Bei den beiden Funktionen „Kontraktion zurück zum CFP nach links“ und „Expansion weg vom CFP nach rechts zu den zahllosen Varianten“ handelt es sich um einen antagonistischen, sich wechselseitig ausschließenden Gegensatz, entsprechend dem Gegensatz von Angst und Lust Gl. 3.

Es bleiben die folgenden sechs heterogenen Gleichungen (wenn Gl. 48 und Gl. 49 mitzählt werden), mit deren Hilfe man beispielsweise die Psychoanalyse und die Orgontherapie erklären kann:

\[
\begin{align*}
\text{Gleichzeitigkeit} & \quad \rightarrow \quad \text{Bewegung} & \text{Gl. 65} \\
\text{Bewegung} & \quad \rightarrow \quad \text{Gleichzeitigkeit} & \text{Gl. 66} \\
\text{Denken} & \quad \rightarrow \quad \text{Fühlen} & \text{Gl. 67} \\
\text{Fühlen} & \quad \rightarrow \quad \text{Denken} & \text{Gl. 68}
\end{align*}
\]

II.1.d. Die Grundlage der Psychoanalyse

Infolge der Behinderung der organotischen Strömung durch Panzerung kommt es zu einer grundlegenden Veränderung sämtlicher Funktionen. Die Funktionen Erregung, Wahrnehmung, Bewegung, Gleichzeitigkeit, Fühlen, Denken, etc. werden gestört und fragmentiert. Betrachten wir Gl. 52 wird im Bereich der Bewegung der Bewegungsablauf unlebendig, mechanisch, gemäß Gl. 57 damit auch das Gefühlsleben. Im Bereich der gleichzeitigen Wirkung zerfällt eben diese Gleichzeitigkeit, d.h. das einheitliche Funktionieren, und damit nach Gl. 58 auch die mentalen Funktionen. Was mit der Wahrnehmung und der Erregung im gepanzerten Organismus geschieht, hat Reich ausführlich in Charakteranalyse (Reich 1949b) beschrieben. Das einheitliche Funktionieren zersplittert und es kommt dergestalt zu mechanistischen und mystischen Vorstellungen.

Konia schreibt:

Bei Anwesenheit von Panzer werden die Wahrnehmungs- und Erregungsfunktionen der gepanzerten Segmente vom Gesamtorganismus abgespalten und werden nicht bewußt wahrgenommen. Es liegt eine Störung des Kontakts vor. Die Grundlage des Unbewußten, ein psychologisches Konzept, das von
Freud entwickelt wurde, ist die Kontaktlosigkeit, ein biologischer Zustand. (Konia 2000b, S. 141)

Im Muskelpanzer ist auf fragmentierte Weise die Geschichte seiner Entstehung enthalten. Das zusammenhanglose Wirrwar dieser isolierten Geschichten bildet das, was Freud als „das Unbewußte“ bezeichnet hat und was Mystiker als Engel und Dämonen erfahren. Die Panzerung ist dergestalt der Inhalt der Psychoanalyse. Sie ist buchstäblich im Panzer gefangen und entsprechend ist ihr die orgonotische Strömung prinzipiell unzugänglich. Psychoanalyse beruht darauf, daß die Erregung, die Bewegung, das Fühlen keine Orientierung mehr bietet bzw. die letztere ganz in der Sensation aufgeht, und von daher auf den Transformationen Gl. 68, Gl. 66, Gl. 63 und Gl. 49. Oder mit anderen Worten, das Innen wird durch das Außen ersetzt.

Um die vier genannten Transformationen nachvollziehen zu können, sollten wir uns nochmals Gl. 51 und Gl. 52 anschauen und wie folgt umgestalten.

![Diagramm]

Wenn man die linke Seite von Gl. 69 mit Gl. 50 gleichsetzt, wird seine funktionelle Bedeutung plastischer.

Die neurotische Energiestruktur nimmt prinzipiell zwei Modi an: das zwangsneurotische Zergliedern, die Konzentration auf die Sensationen und die zerebrale Wahrnehmung auf der einen Seite und das hysterische Dissozieren, das Aufgehen in irrationalen Emotionen und Erregung.

Die Psychoanalyse versucht den hysterischen Modus in den zwangsneurotischen zu überführen: Fühlen in Denken (Gl. 68). Die Gefühle, die den Rahmen des Denkens bilden, ganz entsprechend wie die Umwelt unser Innenleben formt, werden.
"thematisiert" und zum Verschwinden gebracht, bzw. das Denken wird zum Rahmen der Gefühle. Nichts anderes bedeutet Psychoanalyse, das Zergliedern und Bewußtmachen des Unbewußten.

II.1.e. Die Grundlage der Orgontherapie

Die Orgontherapie ist praktisch das spiegelverkehrte Gegenstück der Psychoanalyse. Denken wird in Fühlen überführt (Gl. 67), Gleichzeitigkeit in Bewegung (Gl. 65), Sensation in Emotion (Gl. 62) und Wahrnehmung in Erregung (Gl. 48). Dabei geht es nicht um die Rekonstruktion der Vergangenheit, sondern um die Bewältigung der Gegenwart, d.h. die ungestörte Entfaltung der Funktionen durch

Wie bereits erwähnt, gibt es fünf Emotionen: Lust, Angst, Wut, Sehnsucht und Trauer. Sie lassen sich in zwei Gruppen aufteilen: expansive und kontraktile.\(^\text{11}\)

![Diagramm]

Zunächst haben wir Lust, Wut und Sehnsucht auf der einen und Angst und Trauer auf der anderen Seite. Was bleibt sind die Paarungen Lust gegen Wut, Wut gegen Sehnsucht, Lust gegen Sehnsucht und Angst gegen Trauer. Doch auch das sind jeweils antagonistische Gegensätze, da im Vergleich immer die erste der beiden Funktionen „expansiver“ ist als die zweite: Lust entspricht einer Energiebewegung in die Peripherie, während Zorn in die Muskulatur geht und bio-elektrisch als Kontraktion in Erscheinung tritt (Reich 1937).

Ich habe schon öfters in Gedanken versucht, die Emotionen orgonometrisch zu ordnen, bin aber stets an der Fünfzahl gescheitert, die sich gegen das orgonometrische Schema sperrt. Kaum nehme ich ein Blatt Papier zur Hand und lasse dergestalt das lineare Denken hinter mir, habe ich praktisch sofort die korrekte Gleichung vor mir:

![Diagramm]

Wut auf der einen und Angst auf der anderen Seite sind Funktionen, denen eine Dynamik zugrundeliegt, in der sowohl Kontraktion als auch Expansion eine Rolle spielen: Wut mit ihren kontraktiven Anteilen entsteht, wenn sich der Lust ein Hindernis in den Weg stellt und Angst ist eine Kontraktion gegen die lustvolle Expansion.

\(^{11}\) Ich habe darauf bereits in meiner Diskussion des Begriffs „Funktion“ mit Verweis auf Reich in Kapitel I.1.a.hingewiesen. Dort habe ich auch angemerkt, daß die Sensationen ähnlich organisiert sind. Im Bereich der Sensationen gibt es die fünf Sinne.
Sehnsucht und Trauer hingegen sind reine Expansion bzw. reine Kontraktion. Das erklärt, warum alle Emotionen untereinander gemäß Gl. 70 antagonistische Gegensätze sind.

Der medizinische Orgonom arbeitet mit diesen Gegensätzen, um dergestalt die Pulsation zu aktivieren und es der orgonotischen Strömung zu ermöglichen wieder frei zu fließen.

II.2. Die kosmische Überlagerung

II.2.a. Die Galaxien

www.orgonomie.net
werden kann, was an Reichs frühen Theorien von mehr als historischem Interesse ist.

Es ist irrelevant, daß Reich manche Ansichten für Jahrzehnte hochhielt und erst in seinen letzten Jahren änderte. Die Zeitdauer ist kein Argument, Gewicht hat nur die *funktionelle* Bedeutung. Das geht soweit, daß heutige Erkenntnisse entscheidender sein können als Reichs Autorität und der Status quo seither. Wichtig ist nicht Quantität (der durch den Kalender beschriebene Zeitpfeil und die verstrichene Zeitdauer), sondern die *Qualität* (die Tiefe der Erkenntnis).

![Diagramm](Gl. 72)

Wenn wir wissen wollen, was orgonotischer Kontakt ist, müssen wir, mit Gl. 72 im Hinterkopf, in die Weiten des Weltalls blicken: Galaxien sind das sinnfälligste Resultat von „orgonotischem Kontakt“, weil hier die zugrundeliegende Energiebewegung weiter sichtbar bleibt.

II.3.b. Familien und Arbeitsorganisationen

Sowohl die Beziehung zwischen Liebenden als auch die zwischen Anbieter und Konsument kann man als einfachen Gegensatz darstellen (Harman 2010, S. 69-77):

![Diagramm](Gl. 73)
Beide Seiten stehen sowohl für Erregung als auch für Wahrnehmung. Der Anbieter
bietet etwas an (Erregung), was der Kunde wahrnimmt. Umgekehrt signalisiert der
Kunde, daß er kaufen kann (Erregung), was dann der Anbieter wahrnimmt. Dies
setzt ein Pulsieren zwischen Ladung und Entladung in Gang:

\[
\text{Metabolismus} \quad \begin{array}{c}
\text{(Ladung} \quad \leftrightarrow \quad \text{Entladung)}
\end{array}
\]

Es ist ein ständiges Geben und Nehmen, das, ganz ähnlich wie die Wechselwirkung
in der Elementarteilchenphysik, die durch den ständigen Austausch von
„Austauschteilchen“ erklärt wird, funktioniert. Die Wechselwirkung in der Physik kann
man sich wie ein Tennisspiel vorstellen, wo der Tennisball, bzw. natürlich dessen
wechselseitiger Austausch, die Spieler zusammenhält. Tatsächlich ist es der
Orgonenergie-Metabolismus, „der die Natur im Innersten zusammenhält“.

In der Ökonomie konstituiert sich dergestalt die Beziehung von Produzent und
Konsument sowie die von Arbeitgeber und Arbeitnehmer. Konia hat das mit den
den beiden folgenden Gleichungen dargestellt (Konia 2008a, S. 193):

\[
\begin{array}{c}
\text{Ladung (Kreditaufnahme)} \quad \leftrightarrow \quad \text{Entladung (Abzahlung durch Arbeit)}
\end{array}
\]

\[
\begin{array}{c}
\text{Entladung durch Arbeit} \quad \leftrightarrow \quad \text{nimmt Arbeitsleistung auf}
\end{array}
\]

\[
\begin{array}{c}
\text{Arbeitnehmer} \quad \leftrightarrow \quad \text{Arbeitgeber}
\end{array}
\]

\[
\begin{array}{c}
\text{nimmt Geld auf} \quad \leftrightarrow \quad \text{gibt Geld ab}
\end{array}
\]

Obwohl die verschiedenen Funktionsbereiche von den gleichen orgon-energetischen
Prozessen bestimmt werden, darf nicht mechanisch von einem Bereich auf den
anderen geschlossen werden. Das hat beispielhaft Richard A. Blasband in seinem
grundlegenden Aufsatz über Meteorologie durchexerziert (Blasband 1969). Hier
versuchte er Reichs bioenergetische Überlegungen zur Funktion des Orgasmus auf
den Orgonenergie-Metabolismus der Atmosphäre zu übertragen. Bei allen
Unterschieden wird die fundamentale Einheit der Natur deutlich, die von der
kosmischen Überlagerung geprägt wird:

Die Kreiselwelle in Gestalt der Überlagerung, wie wir sie bei Spiralgalaxien und Tief- bzw. Hochdrucksystemen vorfinden, wird auch evident, wenn wir gegen alle Regeln Gl. 46 mit Gl. 47 vereinigen (vgl. Gl. 72):

![Diagramm]

Wird orgonotischer Kontakt hergestellt, können Produkte, Projekte, Dienstleistungen etc. entstehen. Ein konkretes Beispiel für eine solche genuine Schöpfungsfunktion habe ich im Anschluß an Meyerowitz und Karl Marx in Gl. 24 angegeben:

![Diagramm]

Konia präsentiert zahllose Produkte entsprechender Vorgänge im Organismus (Konia 2008b).

II.3.c. Atome

Traditionell betrachtet man nicht die Galaxien, sondern die Atome als Grundeinheiten der Natur. Zur Annäherung an die Atome bietet sich Gl. 52 an. Reich zufolge kann man das Licht (die elektromagnetische Wechselwirkung), das eine Welle und gleichzeitig ein Teilchen (Photon) ist, von der Kreiselwelle her verstehen (Konia 2000a):
Aus Sicht der Quantenmechanik ließe sich das auf grundsätzlich alle Elementarteilchen übertragen, also vor allem Elektronen, Protonen, Neutronen, aber auch auf ganze Atomkerne, ja sogar auf Atome selbst. Sie alle können in Gl. 80 an die Stelle des Photons treten.

Nach Gl. 52 ist die Pulsation die zweite Funktion, die zur Funktion Kreiselwelle gehört. Im Atom entspricht die Pulsation funktionell der Kreisbewegung der Elektronen um den Atomkern herum. Der Pulsation entsprechen alle Funktionen, die in sich selbst geschlossen sind und von daher „Substanz“ und einen Metabolismus besitzen. Atome entladen sich durch das Aussenden von Photonen (orgonotische Entladung) bzw. werden mit Photon aufgeladen („Anregung“).

Das von der Quantenmechanik beschriebene einheitliche und „geistige“ Verhalten des Atoms wird von Funktionen beschrieben, die der Funktion Gleichzeitigkeit in Gl. 52 entsprechen. Damit werden wir uns in Kapitel VII näher beschäftigen.

Diese Deutung führt zu einem schlimmen Paradoxon, wenn wir sie auf folgenden Fall übertragen: Solange ein Vorgang in der Quantenwelt nicht beobachtet wird, ist er

Beide Deutungen der Quantenmechanik lassen sich mit einiger Mühe in Gl. 50-52 einpassen. Die Kopenhagener Deutung ist einseitig an der Wahrnehmung orientiert (ich bringe die Quantenwelle zum Kollabieren!) und die Vielwelten-Deutung einseitig an der Erregung (ich bin jeweils zu meiner Welt verdammt). Jeweils erfasse ich einen Teilaspekt dessen, was sich tatsächlich entfaltet: die orgonotische Strömung. Es sei zurück auf Gl. 69 verwiesen.

Gl. 69 ermöglicht uns diese Zusammenhänge auf einfache Weise zu erfassen:
II.3.d. Bewußtsein

Um das Phänomen „Bewußtsein“ zu verstehen, müssen wir nochmals Gl. 46 anschauen. Sie besagt, daß sich durch eine materielle Membran, die die einheitliche kosmische Orgonenergie in eine innere, organismische und eine äußere atmosphärische Orgonenergie aufspaltet, die einheitliche orgonotische Strömung in zwei Teilströme teilt: Wahrnehmung und Erregung.12

![Diagram](image)

Diese Annäherung an das Phänomen „Bewußtsein“ geht auf die Psychoanalyse zurück.

Wie fundamental das Körperbild ist, zeigt z.B. die manchmal einschneidende Wirkung allein schon eines Kleidungswechsels auf das Bewußtsein. Konia schreibt:

Freud hatte in *Das Ich und das Es* Mitte der 1920er Jahre geschrieben:

> Das Ich ist vor allem ein körperliches, es ist nicht nur ein Oberflächenwesen [sich im Spiegel sehen, PN], sondern selbst die Projektion einer Oberfläche.* Wenn man eine anatomische Analogie für dasselbe sucht, kann man es am ehesten mit dem „Gehirnmännchen“ der Anatomien identifizieren, das in der Hirnrinde auf dem Kopf steht, die Fersen nach oben streckt, nach hinten schaut und, wie bekannt, links die Sprachzone trägt. (Freud 1923, S. 294)

12 Nicht zuletzt das ORANUR-Experiment hat gezeigt, daß beide Funktionen auf rudimentäre Weise bereits im kosmischen Orgonenergie-Ozean (dem „Äther“) selbst angelegt sind, weshalb man diesen durchaus mit dem gleichsetzen kann, was Mystiker als „Gott“ bezeichnen.
Das bewußte Ich sei „vor allem ein Körper-Ich“ (ebd., S. 295). Beim „*“ im obigen Freud-Zitat steht als Fußnote:

Das heißt das Ich leitet sich letztlich von körperlichen Empfindungen her, vor allem von denen, die von der Körperoberfläche ausgehen. Es kann deshalb als eine mentale Projektion der Körperoberfläche betrachtet werden, und außerdem, wie wir oben gesehen haben, die Oberfläche des psychischen Apparats repräsentieren. (Übersetzung der Fußnote von Freud aus der englischen Ausgabe von 1927)

\[
\text{Kreiselwelle} \rightarrow \text{Welle} \rightarrow \text{Puls} \]

Gl. 83, die die Beobachtung des Quantenobjekts beschreibt, ist nicht von ungefähr mit Gl. 80 identisch, die das Quantenobjekt selbst beschreibt.
III. Das Wesen der Zahlen

III.1. Der sekundäre Funktionsbereich

III.1.a. Die Priorität der Qualität

Frei nach Hegel (Brückov 2001) und Meyerowitz (Meyerowitz 1997), dessen Ansatz hier nur in stark reduzierter und modifizierter Weise eingang findet, kann man die Zahl wie folgt orgonometrisch in den Griff bekommen:

\[
\begin{align*}
\text{Zahl} & \quad \text{das Abzählen} \quad \text{Gl. 84} \\
& \quad \text{....der Einheit 1}
\end{align*}
\]

Das entspricht den physikalischen Größen: Physikalische Größe = Zahlenwert • Einheit. Außerdem können wir dem Abstraktum „Zahl“ Leben einhauchen, indem wir in Anlehnung an unsere Grundgleichung Gl. 20 diesen drei Zahlenelementen konkrete Funktionen zuordnen:

\[
\begin{align*}
\text{die "PSYCHE" der Zahl} & \quad \text{(das Abzählen)} \\
\text{die GANZHEIT} & \quad \text{Gl. 85} \\
\text{der Zahl} & \quad \text{die TEILE der Zahl}
\end{align*}
\]
Das Abzählen entspricht der Psyche, d.h. der Wahrnehmung der Zahl in der Gesamtheit ihrer einzelnen „Stücke“.

Demnach ist es möglich, die Zahlen nicht nur als bloße Konzepte, sondern als konkrete Funktionen zu behandeln. Am Anfang war es sicherlich so, daß der Mensch auf bestimmte „Einheiten“ stieß, etwa auf Enten bei der Jagd, diesen ersten qualitativen Eindruck dann quantifizierte, d.h. die betreffenden Einheiten abzählte, und so schließlich auf das abstrakte Konzept „Zahl“ stieß, das vollkommen unabhängig von dem ist, was sich hinter der Einheit verbirgt: ob „4 Enten“ oder „4 Äpfel“, die Zahl 4 bleibt gleich. Aber nachdem der Mensch mit der Zahl praktisch arbeitet, kann man von ihr als einer Funktion sprechen (Meyerowitz 1997), die sich gemäß Gl. 84 in einen quantitativen und einen qualitativen Anteil aufspaltet.13

Auf diesen „strukturellen“ Aspekt der Zahlen werden wir im 2. Abschnitt näher eingehen. Hier geht es zunächst einfach darum, die Zahl, so wie sie uns im Alltagsleben entgegentritt, orgonometrisch zu erfassen, d.h. als monotones rein quantitatives Abzählen beliebiger funktioneller Einheiten – „1 Finger, 2 Finger, 3 Finger, 4 Finger, 5 Finger“:

III.1.b. Das Problem der Null

Es gibt zwei Arten von Null. Zunächst jene Null, die man auf einem Zollstock festlegen kann (Abb. 14). Hier ist sie eine frei verschiebbare Markierung, die sich in nichts von den anderen Markierungen unterscheidet. Zu beachten ist nur die Wahrung der richtigen Zahlenfolge und des einheitlichen Abstandes zwischen den Zahlen:

![Diagramm zur Null](null_diagram.png)

Alle Zahlen, einschließlich der Null, sind von der nächstfolgenden (oder vorangehenden) eine Einheit 1 entfernt – was z.B. Rechnungen wie „4 − 5 = −1“ möglich macht. Die mit der Null verbundene Einheit wird gezählt wie jede andere.

Im Positionssystem ist es ähnlich: ob „541“ oder „501“, die Null unterscheidet sich in nichts von den anderen Zahlen, d.h. sie repräsentiert eine Zehnerpotenz. Löst man die Zahl 501 jedoch in eine Gleichung auf, wird die mit der Null verbundene Einheit genausowenig wie etwa in der Gleichung 4 − 4 = 0 gezählt:

\[
1 \times 10^0 + 0 \times 10^1 + 5 \times 10^2.\]

Diese „echte“ Null taucht nur dann in Rechnungen auf, wenn sie ausdrücklich genannt wird, etwa in „2 + 0 = 2“. Entsprechend Gl. 86 erschließt sich diese Zahl 0 wie folgt (in starker Abweichung von Meyerowitz [Meyerowitz 1997]):

![Diagramm zur Null](null_diagram.png)
Wie in Abb. 14 ist auch hier die Null nicht einfach nur „Null“, d.h. ein absolut inhaltssleeres „Vakuum“, vielmehr taucht in ihrer Entwicklungsgleichung immer noch die Einheit 1 auf. Wir haben es sozusagen mit „null Einern“ zu tun. (Im Positionssystem entsprechend mit „null Zehnern“, „null Hundertern“, etc.)

Was mit Gl. 87 gesagt sein will, wird vielleicht anhand folgender Ausdrucksweise deutlicher (Brückov 2001):

\[0 \cdot 1 \]
\[0 = 0 \]
Zahl gleich Quantität (Abzählen) mal Qualität (Einheit)
Abb. 15

\[1 \cdot 0 \]
\[0 = 1 \]
Zahl gleich Quantität (Abzählen) mal Qualität (Einheit)
Abb. 16

Formal mathematisch wäre auch Abb. 16 möglich, aber funktionell macht die dort präsentierte funktionelle Gleichung keinen Sinn, da es die „Einheit Null“, also das absolute Nichts, das absolute Vakuum, nicht geben kann (Reich 1950d, S. 176), sehr wohl aber „die Abwesenheit bestimmter Einheiten“.

Aus qualitativer Sicht existiert die Zahl Null nicht, sondern nur aus quantitativer. Zum Beispiel kann man von einer, zwei, drei, etc. Enten oder von „keiner Ente“ sprechen. Dabei bedeutet der erste Term die „Menge“, die von ihrer Natur her, d.h. als Quantität, beliebig ist. Der zweite Term bezeichnet die „Einheit“, die „Größe“, etc., die als Qualität unteilbar und nicht aufhebbar ist. Und eine hypothetische Einheit „Nicht-Ente“ wäre eine Gans, ein beliebiger Vogel außer einer Ente, ein Stück Holz, eine Luftspiegelung oder was auch immer, vielleicht sogar ein „Loch in der Landschaft“, aber in keinem Fall schlichtweg „Nichts“.

III.1.c. Das Problem des Unendlichen

www.orgonomie.net

Der kontaktlose „Verstand“, die Mathematik, steht im Widerstreit mit der natürlichen „Vernunft“, d.h. der Orgonometrie. F.A. Lange schreibt über den Gegensatz von Mathematik („Wissenschaft“) und Emotion:

> Die Wissenschaft führt uns auf den Begriff des Unendlichen; das natürliche Gefühl sträubt sich dagegen. Worauf dies Sträuben beruht, ist schwer zu sagen. Kant würde es den Einheitsbestrebungen der Vernunft zuschreiben, welche mit dem Verstande in Widerspruch geraten. (...) Es ist gewiß, daß Urteil und Schlußfolgerung uns immer von einem Glied zum andern und zuletzt ins Unendliche führen, während wir ein Bedürfnis des Abschlusses empfinden, welches mit den endlosen Folgerungen in Widerspruch gerät. (Lange 1866, S. 643)

Was die unabschließbare Kette der natürlichen Zahlen betrifft, ist zu konstatieren, daß auch hier die Praxis uns dazu zwingt, das Unabschließbare immer wieder abzuschließen. Aus diesem Grund ist, wie bereits im Zusammenhang mit der Null angeschnitten, unser gebräuchliches Zahlensystem ein *zyklisches* „Positionssystem“:

<table>
<thead>
<tr>
<th>Einer</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zehner</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>Zwanziger</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>30</td>
</tr>
<tr>
<td>Dreißiger</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>40</td>
</tr>
</tbody>
</table>

Abb. 17
Normalerweise stellen wir uns die Zahlen anhand eines unendlich langen Zollstocks vor. Doch betrachten wir die Zeichen auf dem Zollstock, begegnen wir einer zyklischen Wiederholung des ewig Gleichen, d.h. die Einheit 1 wird nicht durchgehend, sondern im Rahmen der Einheit 10^n werden die Ziffern von 1 bis 0 ständig von neuem abgezählt. Das zeichnet, wenn auch in abstrakter Form, eine Art „Kreiselwelle“ (die Einheit von gerader Strecke und Kreis). In diesem Zusammenhang ist auch bemerkenswert, daß wir das „gradlinige“ Fortschreiten der Zeit mit Uhren messen, auf denen in einer Art Pulsation ewig die gleichen Ziffern bzw. Zeigerstellungen erscheinen (vgl. dazu Abb. 11).

Mit einiger Mühe konnten wir Gl. 86 für den Fall der Zahl 0 formulieren (Gl. 87). Dank des Dezimalsystems wirft eine entsprechende Gleichung auch bei relativ „unendlich“ großen Zahlen wie „400 Trillionen“ keine unüberwindlichen Probleme auf. Wir müssen nur die Einheit gemäß des dezimalen Positionssystems um 20 Zehnerpotenzen erhöhen und so einen praktischeren „Einser“ kreieren (statt 10^0 = 1 nehmen wir einfach 10^{20} als unsere „Einheit 1“):

\[400\,000\,000\,000\,000\,000\,000\,000 \]

\[10^{20} \]

Gl. 88

Weniger abgerundet könnte in der ersten Funktionsvariante z.B. auch „4,249 |“ stehen. Ähnlich verhält es sich mit Bruchzahlen: hier müssen wir uns mit einem Ausdruck wie „0,5 |“ oder, bei Pi, „3,14 |“ aushelfen („½ der Einheit 1 zählen“, „die Einheit 1 22/7 mal zählen“). Wichtig ist eh nur eine möglichst sinnfällige Unterscheidung zwischen dem Abzählen, dem was abgezählt wird und der eigentlichen Zahl gemäß Gl. 84.

III.2. Der primäre Funktionsbereich

III.2.a. Funktionelle Zahlenreihen

In der elementaren Zahlentheorie werden die natürlichen Zahlen in „Primfaktoren“ zerlegt. Das ist jedoch keine ganzheitliche, sondern eine atomistische Betrachtungsweise. Primfaktoren entsprechen den Atomen. Zum Beispiel kann man

die Zahl 50 genauso in Primfaktoren zerlegen \((5 \cdot 5 \cdot 2)\) wie das Wassermolekül in Atome (H.H.O). Wir hingegen sind nicht an der Zerlegung in mechanische Teile interessiert, sondern gemäß unserer Grundgleichung Gl. 20 an der Aufteilung der Zahlen in einen quantitativen und einen qualitativen Anteil.

Im ersten Abschnitt haben wir entsprechend alle abzählbaren Zahlen in einen quantitativen „Zähler“ und einen (für alle Zahlen identischen) qualitativen „Nenner“ aufgeteilt, so daß wir beispielsweise von „null Einern“ sprechen konnten. Doch damit haben wir die Zahlen sozusagen nur von außen erfaßt, ohne ihre innere Struktur und damit die funktionalen Unterschiede zwischen ihnen aufdecken zu können. (Ob das dezimale Positionssystem irgendeine tiefere Bedeutung hat, konnten wir mit unserem bisherigen Ansatz nicht sagen.)

Wir haben die Zahlen, die sich aus Primzahlen zusammensetzen (etwa die Zahl \(50 = 50 \cdot 1\)) genauso behandelnd wie die Primzahlen selbst (etwa die Zahl \(5 = 5 \cdot 1\)). Aber nur bei Primzahlen gibt es tatsächlich auch nur eine einzige mögliche Zerlegung in Primfaktoren. Bei allen anderen Zahlen, etwa der ersten Nichtprimzahl 4, gibt es mindestens zwei \((4 = 4 \cdot 1, 4 = 2 \cdot 2)\), bei der Zahl 50 drei \((50 = 50 \cdot 1, 50 = 25 \cdot 2, 50 = 10 \cdot 5)\), bei anderen zusammengesetzten Zahlen mehr Möglichkeiten der Zerlegung in zwei Faktoren, wobei natürlich der zweite ein Primfaktor sein muß.

Von diesen zwei oder mehr Möglichkeiten der Zerlegung kann aber jeweils nur eine die funktionell richtige sein, um die innere Struktur der betreffenden Zahl wiederzugeben. Bei der Zahl 4 wäre es z.B. hinsichtlich ihrer inneren Struktur nichtssagend \(4 = 4 \cdot 1\) zu setzen, stattdessen nimmt man den größeren Primfaktor: \(4 = 2 \cdot 2\). Bei 50 wählen wir entsprechend den größtmöglichen Primfaktor: \(50 = 10 \cdot 5\). Wenn wir das bei allen Zahlen durchexerzieren, erhalten wir folgende Tabelle, deren funktionelle Zahlenfolgen unser Vorgehen rechtfertigen:

<table>
<thead>
<tr>
<th>Kr(^x)</th>
<th>Kreis</th>
<th>Dezimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = 1 \cdot 1</td>
<td>2 = 1 \cdot 2</td>
<td>3 = 1 \cdot 3</td>
</tr>
<tr>
<td>4 = 2 \cdot 2</td>
<td>6 = 2 \cdot 3</td>
<td>10 = 2 \cdot 5</td>
</tr>
<tr>
<td>8 = 4 \cdot 2</td>
<td>9 = 3 \cdot 3</td>
<td>15 = 3 \cdot 5</td>
</tr>
<tr>
<td>16 = 8 \cdot 2</td>
<td>12 = 4 \cdot 3</td>
<td>20 = 4 \cdot 5</td>
</tr>
<tr>
<td>32 = 16 \cdot 2</td>
<td>18 = 6 \cdot 3</td>
<td>25 = 5 \cdot 5</td>
</tr>
<tr>
<td>64 = 32 \cdot 2</td>
<td>24 = 8 \cdot 3</td>
<td>30 = 6 \cdot 5</td>
</tr>
<tr>
<td>etc.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die Trennung der Zahlen in Geist (Abzählen, der erste Faktor) und Körper (die größtmögliche Primzahl, der zweite Faktor) macht ihren funktionalen Gehalt deutlich. Im ersten Abschnitt hatten wir alle Zahlen der Qualität „Primzahl 1“ zugeordnet. In
diesem zweiten Abschnitt beziehen wir die Zahlen auch auf die anderen Qualitäten: „Primzahl 2“, „Primzahl 3“, „Primzahl 5“, „Primzahl 7“ und so unendlich fort. Lücken, wie zwischen $4 = 2 \cdot 2$ und $8 = 4 \cdot 2$ ergeben sich daraus, daß der Körper der Zahl (Qualität) stets Priorität vor dem Geist der Zahl (Quantität) hat (siehe Abb. 15 und Abb. 16 und die daran anschließende Diskussion). Aus diesem Grund gilt nicht $6 = 3 \cdot 2$, sondern $6 = 2 \cdot 3$.

Wie wir im ersten Abschnitt gesehen haben, gewinnt ohnehin bei sehr großen Zahlen das Abzählen mittels des Dezimalsystems die Oberhand.

III.2.b. Die Entwicklungsgleichung der Zahlen

Der zweiten Zahlenreihe von Abb. 18 sind wir bereits in Kapitel I begegnet (Abb. 6): die geometrische Zahlenreihe 2, 4, 8, 16, 32, 64, etc. entsteht, wenn sich etwa eine Amöbe teilt. Gl. 17 beschreibt die orgonometrische Generierung dieser fundamentalsten aller Zahlenreihen. Man könnte Gl. 17 geradezu als **die** „Entwicklungsgleichung der Zahlen“ betrachten.

Bereits Platon hat diese Grundstruktur der auf den ersten Blick so monotonen Reihe der natürlichen Zahlen aus dem „Prinzip 1“ entwickelt, dem sich das „Prinzip 2“

15 Sie nach dem dezimalen Positionssystem zu ordnen, würde nur dem Abzählen dienen, ähnlich der Aufteilung in „Einer“, die das Zählen erst ermöglicht – vgl. Gl. 90.

Diese Lücke wird geschlossen, wenn wir die Entwicklungsgleichung Gl. 17 tiefer durchdringen. Das gelingt, indem wir die zweite Reihe aus Abb. 18, die mittels des einzig geraden Primfaktors, nämlich der Zahl 2, gebildet wurde, den ungeraden und d.h. allen anderen Primfaktoren gegenüberstellen. Tatsächlich ist das die denkbar einfachste Aufteilung der Zahlen überhaupt – die Aufteilung in ungerade und gerade Zahlen:

<table>
<thead>
<tr>
<th>Primzahlen</th>
<th>(Kr^x)-Zahlen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>49</td>
</tr>
<tr>
<td>9</td>
<td>81</td>
</tr>
<tr>
<td>11</td>
<td>121</td>
</tr>
<tr>
<td>13</td>
<td>169</td>
</tr>
<tr>
<td>15</td>
<td>225</td>
</tr>
<tr>
<td>17</td>
<td>289</td>
</tr>
<tr>
<td>19</td>
<td>361</td>
</tr>
<tr>
<td>21</td>
<td>441</td>
</tr>
<tr>
<td>etc.</td>
<td></td>
</tr>
</tbody>
</table>

Rechts werden jeweils auch die Potenzen angegeben. Sie „beschleunigen“ das ganze und machen dergestalt die Zahlengesetze deutlicher. Die eigentlichen Primzahlen und \(Kr^x \)-Zahlen sind hervorgehoben.

III.2.c. Das „arithmetische Pendel“

Als nächster Schritt stellt sich die Frage, was das CFP der beiden Zahlenreihen von Abb. 19 sein mag. Hier bietet sich Eugen Brückovs „arithmetisches Zahlenpendel“ an (Brückov 2001), mittels dem die Beziehung der Primzahlen zu den \(Kr^x \)-Zahlen deutlicher wird. Dazu wird die Kreiszahl 6 in vier Kolumnen aufgereiht.
Man beachte, wie durch die Herausnahme der „Kreiszahlen“ die beiden zentralen Zahlenreihen im Vergleich zu Abb. 19 in sich weitaus geschlossener werden.

<table>
<thead>
<tr>
<th>6n±0 Kreiszahlen</th>
<th>6n±1 Primzahlen</th>
<th>6n±2 Kr²-Zahlen</th>
<th>6n±3 Kreiszahlen</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 36</td>
<td>1 1</td>
<td>2 4</td>
<td>3 9</td>
</tr>
<tr>
<td>5 25</td>
<td>4 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 49</td>
<td>8 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 121</td>
<td>10 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 169</td>
<td>14 196</td>
<td>15 225</td>
<td></td>
</tr>
<tr>
<td>17 289</td>
<td>16 256</td>
<td>19 361</td>
<td>20 400</td>
</tr>
<tr>
<td>23 529</td>
<td>22 488</td>
<td>25 625</td>
<td>26 676</td>
</tr>
<tr>
<td>29 841</td>
<td>28 784</td>
<td>31 961</td>
<td>32 1024</td>
</tr>
<tr>
<td>33 1089</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

etc.

Man beachte, wie durch die Herausnahme der „Kreiszahlen“ die beiden zentralen Zahlenreihen im Vergleich zu Abb. 19 in sich weitaus geschlossener werden.

Den Primzahlen und den Kr²-Zahlen ist gemeinsam, daß sie – im Gegensatz zu den Kreiszahlen – nicht durch 3 teilbar sind:

Kreiszahlen: durch 3 teilbar, links gerade, rechts ungerade
Primzahlen: nicht durch 3 teilbar und ungerade
Kr²-Zahlen: nicht durch 3 teilbar und gerade

Die Kreiszahlen sind durch die erste vollwertige Primzahl, die 3, geprägt. Sie verkörpern also sowohl die unteilbaren Primzahlen (alle Primzahlen außer 2 sind ungerade), als auch, da sie alle durch 3 teilbar sind, das Gegenteil der Primzahlen. Damit sind sie das Gemeinsame Funktionsprinzip (CFP) der Primzahlen und der Kr²-Zahlen:

![Kr²-Zahlen](primzahl_kreiszahl.png)

Im 1. Abschnitt wählten wir die Zahl 1 als zu „messende“ Einheit (der kleinste gemeinsame Nenner aller Zahlen), im 2. Abschnitt auch die anderen Primzahlen (der größte Primfaktor der jeweiligen individuellen natürlichen Zahl), was uns schließlich zur Tabelle Abb. 18 führte. Die Primzahlen sind sozusagen der Stoff, aus dem die Zahlen gemacht sind. Die Kr²-Zahlen stehen für den Akt des Abzählens (siehe die platonische „Entwicklungsgleichung der Zahlen“ in Unterabschnitt b. oben). Und was
die Kreiszahlen anbetrifft: der Kreisumfang wird ziemlich genau wiedergegeben, wenn man den Radius mal 6 (≈ 2 π) nimmt (wir werden darauf sogleich genauer eingehen). Zusammengenommen sieht es fast so aus, als würde Gl. 89 die Kreiselwelle Abb. 11 beschreiben.

III.2.d. Die Kreiselwelle

Der viereckige, vierflächige und sechskantige Tetraeder ist einer der fünf „Platonischen Körper“. Das besondere an den Platonischen Körpern ist, daß die einbeschriebene Kugel jede Seitenfläche in ihrem Mittelpunkt berührt, während die umbeschriebene Kugel alle Ecken berührt. Da bei der Kugel „schließlich“ Seitenfläche und Ecke in eins fallen, sind die Platonischen Körper sozusagen „eckige Kugeln“. Betrachten wir die fünf Platonischen Körper (Vier-, Sechs-, Acht-, Zwölf- und Zwanzigflächner) fällt auf, daß die Anzahl der Ecken, Flächen und Kanten (4, 6, 8, 12, 20, 30) durch 4 und/oder durch 6 teilbar sind: 1 • 4, 1 • 6, 2 • 4, 2 • 6, 5 • 4, 5 • 6; daß also nicht nur der Tetraeder durch die Zahlen 4 und 6 gekennzeichnet ist.

Ursprünglich wurde für den Wert π, also die Relation zwischen dem Durchmesser eines Kreises und seinem Umfang, der Wert 3 verwendet, so daß man den Kreisumfang gleich dem Sechsfachen des Radius rechnete (siehe auch die Bibel 1 Könige 7,23). Diese „Kreiszahl“ 6 tritt uns alltäglich in der gängigen Einteilung des Kreises nach dem babylonische Sexagesimalsystem entgegen: 6 • 60 = 360°.16

16 Wie alle übrigen Völker der Antike (Ägypter, Griechen, Römer) bauten die Babylonier ihr „wissenschaftliches“ System komplementär auch auf der Basis 10 auf, so daß sie zur Basiszahl 60 gelangten. (Unter den ersten 100 Zahlen besitzt sie die größte Anzahl ganzzahliger Divisoren – u.a. die Reihe 2, 3, 4, 5, 6.) Für die 10 hatten die Babylonier ein eigenes Zeichen, während von 1 bis 9, 11 bis 19, etc. einfach nur die entsprechende Anzahl von 1 bis 9 Strichen verwendet wurde. Und was die Einteilung des Kreises in 360° anbetrifft, die erst in den letzten vorchristlichen Jahrhunderten eingeführt wurde, findet sich hier die für die Pythagoreer sehr wichtige Tetraktys 36, die Summe der jeweils ersten vier geraden und ungeraden Zahlen: 2 + 4 + 6 + 8 plus 1 + 3 + 5 + 7.

www.orgonomie.net
Ein Kreis wird in sechs gleiche Teile unterteilt, wenn, wie bei einem Sechskantschlüssel, die Sehnen der Sekanten exakt gleich dem Radius sind („Sextant“). Ein Ring aus sechs identischen Kreisen umschreibt einen siebten gleich großen Kreis. Man denke in diesem Zusammenhang auch an die sechszackigen Wasserkristalle (Schneeflocken) oder daran, daß ein Wassertropfen stets genau 24 (4 • 6) kleinere Tröpfchen aus einer Wasseroberfläche herausgeschleudert. Ein Würfel hat 6 quadratische Seiten und 24 Rechte Winkel (Stelzner 1996).

Was nun die Primzahlen betrifft, läßt sich zeigen, daß sie engstens mit den beiden mit dem Kreis verknüpften Zahlen 4 (eine Kr²-Zahl) und 6 (eine eigentliche Kreiszahl) verbunden sind. Zur entsprechenden „Formel“ für die Primzahlen gelangt man, indem man das tetrabasische und ein „hexabasisches“ System so miteinander verknüpft, daß sowohl nach der 4 als auch nach der 6 eine neue Zählreihe beginnt (Stelzner 1996):

Auffallend ist, daß die ersten drei Zahlen aus dem Rahmen fallen: nach der inneren Logik der in Abb. 21 dargestellten „Formel“ müßte die 1 eine Primzahl sein, was sie mathematisch nicht ist, während 2 und 3 wohl Primzahlen sind, aber als einzige Primzahlen reihen sie sich nicht in die beiden Primzahlensäulen ein.

17 Wird zwischen zwei Glasplatten eine dünne Flüssigkeitsschicht erhitzt bildet sich ein Muster aus etwa 1 cm großen Waben. Meistens haben sie eine hexagonale Form.
IV. Das Kr$^\times$-System

Im Anschluß an Kapitel III wird eingehender auf die Bedeutung der Zahl 4 und ihrer geometrischen Reihe eingegangen und gezeigt, daß sie sowohl mit dem gängigen Dezimalsystem als auch mit dem physikalischen Einheitensystem eng verknüpft ist und es mit ihrer Hilfe möglich ist, alle physikalischen Größen auf zwei Grundgrößen zu reduzieren.

IV.1. Das tetrabasische und das Dezimalsystem

IV.1.a. Die Tetraktys

Beispielsweise werden, anders als im gegenwärtigen Deutschen, in den älteren Sprachschichten und vielen modernen Sprachen die ersten vier Zählwörter als Eigenschaftswörter benutzt, deren Geschlecht und Fall sich nach dem Hauptwort richtet. Dies zeigt, daß sie die frühesten Zahlen gewesen sein müssen (Menninger 1957, S. 33).

Das Altindische, Keltsche, Griechische und Altnordische sind solche Sprachen. „Von lebenden Sprachen hat das Slawische den uralten Vier-Einschnitt mehrfach und mit geradezu verblüffender Deutlichkeit bewahrt. Der Tscheche sagt:

\begin{align*}
eins \text{ und eins} & \text{ sind zwei} \\
\text{zwei und zwei} & \text{ sind vier} \\
\text{aber drei und zwei} & \text{ ist fünf}
\end{align*}

\textit{jest} ‘ist’ wird stets angewandt, wenn die Summe größer ist als vier, also ab 5!” (Menninger 1957, S. 34). Entsprechende sprachliche Einschnitte hinter der Vier finden sich bei den Russen, aber auch bei den Türken, den Japanern und vielen Naturvölkern.

Eingeborene in Afrika, Ozeanien und Amerika, die sich zu Beginn dieses Jahrhunderts noch im annähernd ursprünglichen Zustand

Einige Völker, die eine Viererzählung kennen, zählen nicht wie wir mit den fünf Fingern, sondern mit den vier Zwischenräumen zwischen den Fingern.

Die Cumus-Indianer in Kalifornien zählen in einem Vierersystem bis 16 und gehen bei größeren Zahlen zu einem System mit der Basis 20 über. Die Yuki-Indianer erweiterten ein System mit der Basis 8, das sie von der Anzahl der Lücken zwischen den Fingern der Hände herleiteten, indem sie Zweige zwischen die Finger legten. Auf diese Weise zählten sie in ihrem System bis 64. (Barrow 1994, S. 71)

Offensichtlich war in der Geschichte das tetrabasische Zahlensystem primär. Auf dieser Basis haben teilweise unabhängig voneinander die weitaus meisten aller bisherigen Kulturen ein (mehr oder weniger eindeutiges) Dezimalsystem errichtet. Daß sich auch in unserem eigenen Dezimalsystem ein älteres tetrabasisches System verbirgt, wird offenbar, wenn man die ursprünglichen indisch-arabischen Ziffernzeichnen entsprechend untereinander in Gruppen anordnet:

Abb. 22

Dieser tetrabasische Hintergrund, der vielleicht so alt ist, wie die Tiergattung Homo denken kann, mag Pythagoras dazu angeregt haben, die ganze Welt als tetrabasisches System entschlüsseln zu wollen. Interessanterweise war aber nicht nur der bio-kulturelle Hintergrund, sondern auch das Experiment Grundlage dieses Ansatzes.

Das musikalische Urphänomen ist die Oktave, die durch die Zweiteilung der Saite des Monochords entsteht (1 zu 2). Die beiden nachfolgenden vollkommenen Konsonanzen, durch die sich diese Oktave weiter harmonisch aufteilen läßt, zeigen ein Verhältnis der Saitenlängen von 2 zu 3 (reine Quinte) und 3 zu 4 (reine Quarte). Diese Schritte von der 1 zur 2, 3 und 4 standen für die Pythagoreer für die Entstehung der Welt als harmonisches Ganzes. Das war der Beginn der Wissenschaft. Tatsächlich läßt sich von der pythagoreischen „Tetraktys“ (der Vierheit), über die griechische Kosmologie und Kopernikus, Kepler, Newton, eine gerade Linie zur heutigen Physik ziehen.

Geometrisch wurde die Tetraktys durch das „vollkommene Dreieck“ dargestellt, arithmetisch durch die „dreieckige Zahl“ \(1 + 2 + 3 + 4 = 10\). Nach Lukianos bat Pythagoras jemanden, zu zählen, und nachdem dieser 1, 2, 3, 4 gesagt hatte, unterbrach Pythagoras ihn: „Siehst Du? Was Du für 4 hälst, ist 10, ein vollkommenes Dreieck, und unser Eid.“ Die Pythagoreer schworen nämlich bei „dem, der unserer Seele die Tetraktys anvertraut hat, die Quelle und Wurzel der ewigen Natur“ (Waerden 1966, S. 156)

Die 4 wird zur 10 durch einen Vorgang, den man als „theosophische Addition“ bezeichnet. Aus der 10 wird wiederum durch „theosophische Reduktion“ \((1 + 0)\) die 1, was zur „theosophischen Weltformel“ \(4 = 1\) führt (Stelzner 1996, S. 23f).
Der Philosoph und Mathematiker Erhard Weigel (1625-1699), einer der Lehrer von Leibniz, hob ebenfalls die Tetraktys hervor. In der Vier zeige sich, wie er in drei Werken ausführlich erörterte, das dem Menschen „von der Natur eingeprägte Einmaleins“ viel logischer als im Dezimalsystem, das er durch ein tetrabasisches System ersetzten wollte (Cantor 1898, S. 39).

IV.1.b. Das Periodische System der Elemente

Das aus der Zahl 4 abgeleitete „orgonometrische Zahlensystem“, bzw. „Kr“-Zahlensystem beruht auf den geometrischen Reihen $4^n = Kr^n$, also 1, 4, 16, 64, 256, etc. und $25 \cdot Kr^n$, also 25, 100, 400, 1600, 6400, 25600, etc. Neben diesen „gesetzlichen“ Zahlenfolgen gibt es die arithmetische Reihe der Zahl 4, d.h. die Zahlenfolge $n \cdot Kr$ (Reich 1957b).

Ursprünglich leitete Reich das Kr-Gesetz, das er mit seinen Pendelexperimenten verifizierte (Reich 1957b; Harman 1984), aus dem Periodischen System der Elemente ab. Unabhängig davon ist der pythagoreische Zahlenmystiker Michael Stelzner zu einer ganz ähnlichen Überlegung gekommen:

18 Hier erkennt man bereits, ganz ähnlich wie bei der pythagoreischen Tetraktys, die enge Verbindung zwischen dem Kr- und dem Dezimalsystem.

www.orgonomie.net
sowohl die Protonen als auch die Neutronenzahl magisch ist, wie z.B. bei den Kr\(^{40}\)-Elementen \(^{4}\)He (Helium) und \(^{16}\)O (Sauerstoff), sowie dem „10 • Kr-Element“ \(^{40}/^{20}\)Ca (Calcium). Was höhere Elemente betrifft macht diese Betrachtungsweise keinen Sinn mehr, da die von Reich postulierte Kr\(^{n}\)-Systematik der Massenzahlen durch das verhältnismäßige Überhandnehmen der Neutronen verwischt wird.

„Doppelt magische Isotope“ zeichnen sich durch ihre außergewöhnliche Stabilität aus. Entsprechend ist die Reichsche Reihe \(^{1}\)H, \(^{4}\)He, \(^{16}\)O in den Graphen der kosmischen Häufigkeitsverteilung der Elemente eingezeichnet (Rohlfs 1992, S. 161): in dieser Reihenfolge sind es die häufigsten Elemente im Universum. Der „gesetzliche“ Kr\(^{n}\)-Peak für Sauerstoff \(^{16}\)O ist von zwei etwa gleich hohen „ungesetzlichen“ n • Kr-Peaks für Kohlenstoff \(^{12}\)C und Neon \(^{20}\)Ne eingerahmt.\(^{19}\) Der einzige weitere auffallende Peak ist der für Eisen \(^{56}\)Fe, also ebenfalls ein „ungesetzlicher“ n • Kr-Peak.

Die Bildung der Atome stellt man sich so vor, daß nach dem angeblichen Urknall aus einem Leptonen- und Quarkbrei zu \(\frac{3}{4}\) Wasserstoff (H) und zu \(\frac{1}{4}\) Helium (He) entstanden. Dieser Urstoff sei dann zu Sternen kondensiert, die (neben zusätzlichem Helium) den restlichen Bestand an Elementen erbrüteten. Wobei die leichten Elemente im unmittelbaren Anschluß an das Helium, nämlich Lithium, Berylium und Bor, bloße Bruchstücke des Zerfalls schwerer Atome darstellen.

Kurz vor dem Kollaps hat der betreffende Stern die folgende, den Kr\(^{n}\)-Zahlen bzw. den n • Kr-Zahlen entsprechende „Zwiebelstruktur“ von innen nach außen:

<table>
<thead>
<tr>
<th>Element</th>
<th>Fe</th>
<th>S + Si</th>
<th>Ne + O</th>
<th>O + C</th>
<th>He</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nukleon</td>
<td>56</td>
<td>32 28</td>
<td>20 16</td>
<td>16 12</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

\(^{19}\) \(^{20}\)Ne, \(^{24}\)Mg, \(^{28}\)Si, \(^{32}\)S, \(^{36}\)A und \(^{40}\)Ca sind die sogenannten \(\alpha\)-Nukliden. Sie können erzeugt werden, indem man \(^{16}\)O entsprechend viele Alphateilchen anfügt.

IV.1.c. Bodes Gesetz

Reich fand bei seinen Pendelversuchen eine bestimmte Konstante
\[L_{Kr} \cdot \pi \cdot S_{Kr}^2 = K_{Kr}^5 = 102400 \]

Bei „Bodes Gesetz“ nimmt man die größeren Objekte im Planeten- oder Mondsystem und wählt die Entfernung des vom Zentralobjekt aus gesehen dritten Objekts als astronomische Einheit (AE). Im folgenden wird der Abstand Sonne-Erde zur Anpassung an Reichs Kr"-System jedoch zu 10 AE_{Kr} gesetzt:

www.orgonomie.net
Merkur	3,9	4	3,1	4,0	-	4
Venus	7,2	7	6,3	7,0	-	8
Erde	10,0	10	9,4	12,3	-	12
Mars	15,2	16	15,7	21,4	-	16
Planetoiden	29,0	28	28,3	37,5	-	36
Jupiter	52,0	52	53,4	65,7	-	64
Saturn	95,8	100	103,7	114,9	-	108
Uranus	192,8	196	204,2	201,1	-	-
Neptun	301,4	-	-	-	306	-
Pluto	398,8	388	405,3	351,9	-	-

Abb. 25

“Kr”: die an das Kr-System angepaßte Bode-Formel $2^n \cdot 3 + 4$ (mit $n = -\infty, 0, 1, 2, 3, ...$).*

*“π”: eine besondere Abart der Bode-Formel: $\pi(n + 1)$, für $n = 0, 1, 2, 4, 8, 16, ...$ (nach einem Leserbrief in *Bild der Wissenschaft* 9/84).*

“75%:“ bei der „75%-Regel“ wird zu jeder Zahl nacheinander 75% addiert (man beachte die enge Verbindung zu den Kr-Zahlen 25 und 100). Beim Sonnensystem haben wir es mit den Planetenabständen D_n bei Reichs Pendelexperiment mit den Pendellängen L_n zu tun. Das „75%-Gesetz“ sieht dann für beide Gravitationskonfigurationen wie folgt aus:

$$D_{n+1} = 3 \cdot \frac{D_n}{4} + D_n$$

$$L_{n+1} = 3 \cdot L_n + L_n$$

“9“: Rosenblum (C.F. Baker) hat darauf hingewiesen, daß die beiden Kr-Zahlenfolgen im Verhältnis 100/64 = 1,562 zueinander stehen. Entsprechend kann man Bodes Gesetz ergänzen und so die „irreguläre“ Bahn des neunten Planeten, Neptun, erklären (Baker 1968a).*

*“7“: Es gibt eine direkte Verbindung zwischen Bodes Gesetz und der klassischen Tetraktys. Am Ende seiner Habilitationsschrift von 1801 wollte Hegel die Lücke zwischen Mars und Jupiter in der Reihe der damals bekannten sieben Planeten erklären. Dazu erwähnt er, „daß im Platonischen *Timäus* eine andere Zahlenreihe angegeben werde, nach welcher der Demiurg das Weltall gebildet habe: 1, 2, 3, 4, 9, 16, 27. Wäre diese Progression die wahrhafte Ordnung der Natur, dann würde zwischen dem vierten und fünften Planeten ein großer Zwischenraum sein und erhehlen, daß man dort keinen Planeten suchen könne“ (Rosenkranz 1844, S. 154). Doch 1801 und in den folgenden Jahren wurden in rascher Folge Planetoiden entdeckt, die die Lücke zwischen Mars und Jupiter schlossen. Läßt man Hegels Argumentationsweise beiseite (zumal Plato selbst sich auf ein geozentrisches Weltbild bezog), paßt seine Reihe, die ganz in pythagoreischer Tradition auf die Harmonik zurückgeht (1, 2, 3, 4, 3 • 3, 4 • 4, 3 • 3 • 3), aber ausgezeichnet zu Bodes Gesetz. In der obigen Tabelle wurden Hegels Zahlen mal 4 genommen.

Entsprechend lassen sich die Monde betrachten. Der Uranus hat 5 Monde, die alle in die Bode-Formel passen. Dasselbe gilt für die vier großen Monde (deren

IV.1.d. Kreisfunktion und Gravitation

Bei der Beobachtung des atmosphärischen Flimmerns Anfang der 1940er Jahre hatte Reich die Orgonenergie-Hülle der Erde entdeckt, die sich etwas schneller als ihr Planet dreht und so, wie Reich später annahm, nicht nur dessen Rotation hervorruft, sondern auch für die Gravitation verantwortlich ist. Indem Reich die Gewichtskraft \(G = m \cdot g \) mit der Kraft dieser Rotation, d.h. dem Drehimpuls \(K = m \cdot r^2 \cdot \omega \) gleichsetzte (der „Drall“ \(K \) ist die Kraft der Rotation, jene Kraft die erforderlich ist, um die Drehung hervorzurufen oder zum stehen zu bringen) und aus dieser Gleichung die Masse \(m \) eliminierte, gelangte er zu einer neuen Ausdrucksweise für die Schwerebeschleunigung \(g \), bei der der „geradlinige“ Fall in eine „Kreisfunktion“ übersetzt wird:

\[
g \downarrow \int r^2 \omega \quad \text{Gl. 90}
\]

Dies soll die „enge Funktionsbeziehung der Gravitationsbeschleunigung (...) zur Rotation der Orgonhülle des Erdplaneten“ ausdrücken (Reich 1957b, S. 143). Doch von den Dimensionen her stimmt diese Gleichung nicht.

Zu einer zweiten Gravitationsgleichung gelangte Reich über seine Pendelversuche. Mit den Pendeln konnte er die geradlinige Fallbeschleunigung der Masse, wie sie auf der Erde auftritt, in die originale „masselose“ Kreisbewegung der kosmischen Überlagerung überführen, da die Pendelschwingung von der Masse des Pendelkörpers unabhängig ist und einzig und allein von der Länge des Pendels bestimmt wird.

Lassen wir ein („mathematisches“) Pendel der Länge \(L \) schwingen und messen die Schwingungsdauer \(t \), finden wir (für kleine Ausschläge) die folgende Abhängigkeit: \(\sqrt{L} \sim t \). Bei einer Pendellänge von 100 cm „schlägt“ das Pendel Sekunden. Quadrieren ergibt:

\[
L = 100 \cdot t^2 \quad \text{Gl. 91}
\]

Wenn wir mit diesem Sekundenpendel die Schwerebeschleunigung messen, gelangen wir über die Pendelgleichung \(g = \pi^2 \frac{L}{t^2} \) (mit \(t^2 = 1 \) und \(L = 100 \)) zu der zweiten Gleichung, in der \(g \) durch eine „Kreisfunktion“ ausgedrückt wird:

\[
g_{kr} = 100 \pi^2 \quad \text{Gl. 92}
\]

Das entspricht einem Wert von \(g = 986.9604 \text{ cm/sec}^2 \).

Zwar lehrt die Schulphysik, daß die Länge des Sekundenpendels ortsabhängig ist, in jedem Fall jedoch etwas weniger als 100 cm beträgt, und daß sich entsprechendes über die Schwerebeschleunigung sagen läßt,\(^{22}\) doch Reich blieb bei seinen Messungen streng im Kr×-System, d.h. er maß pro „Kr×-Minute“ (= 64 Sekunden) und kam so auf das „orgonotische Sekundenpendel“ mit genau 100 Zentimeter Pendellänge \(L \). Es geht demnach um den grundsätzlichen Ansatz: (1.) ob es einem darum zu tun ist, mechanisch exakt das Verhalten jeden beliebigen Pendels und „fallenden Apfels“ im voraus berechnen zu können oder darum, unvorhergesehene Strukturen und Beziehungen sichtbar zu machen; und (2.) geht es darum, ob die gängigen physikalischen Einheiten wirklich beliebig sind oder ob sie so etwas wie eine „funktionelle Integrität“ besitzen (Harman 1985).

IV.1.e. Das Dezimalsystem

Reich schreibt Gl. 91 und Gl. 92 ausdrücklich auch als: \(L = 10^2 \cdot t^2 \) und \(g = 10^2 \pi^2 \), hebt also hervor, daß die 25 • Kr×-Zahl 100 gleich 10 • 10 ist (Reich 1957b, S. 107, Gl. 3e und 5b). Daneben stehen Gleichungen mit Kr× in keiner Weise entsprechenden Potenzen von 10 wie etwa 10³ oder 10⁴ (Reich 1957b, S. 107, Gl. 4, 5b und 6). Wir haben ja bereits bei Pythagoras gesehen, daß die Zahl 10 eng mit der Tetraktys verbunden ist. Und auch bei Reich wird offensichtlich das tetrabasische Kr×-Zahlensystem vom gewöhnlichen Dezimalsystem überlagert.

Harman führt aus, daß Reich in seinen Pendelversuchen die Schwingungen pro 64 sec zu funktionell ganzen Schwingungen rundete. Bei Pendellängen von 20 cm und weniger rundete er zu den nächsten Vielfachen von zehn Schwingungen (Harman 1984). Reich selbst stellt in seiner Analyse des Pendelexperiments explizit die Verbindung zwischen dem Kr×-System und der Zahl 10 als Multiplikationsfaktor her. Wie bereits dargestellt, fand er zwei Gleichungen, die durch 10 miteinander verknüpft werden.

\(^{22}\) Auf unseren Breitengraden schlägt das Pendel im Durchschnitt bei 99,4 cm Sekunden, z.B. in London bei 99,36 und in Berlin bei 99,42 cm. Die Extremwerte finden sich an den Polen mit 99,63 cm (0° geographischer Breite) und am Äquator mit 99,10 cm (90°). Schulphysikalisch ist bei 45° geographischer Breite, auf der Reich seine Pendelexperimente ausführte, \(g = 980,629 \text{ cm/sec}^2 \), bzw., wie in der Geophysik üblich, 980,629 Gal („Galilei“). Der Wert reicht von 983,221 Gal am Pol bis zu 978,049 Gal am Äquator.
sind und die sich beide auf 1 sec beziehen: das „orgonotische Sekundenpendel“, wo eine Schwingung in einer Sekunde ausgeführt wird, ist genau 100 cm lang, also

\[L \ t^{-2} = \int 100 \ \text{cm/sec}^2 \]

Gl. 93

Die Schwerebeschleunigung „pro Sekunde“ entspricht einem 10mal höheren Wert:

\[g = 987 \ \text{cm/sec}^2 = 100 \ \pi^2 \]

also

\[L \ t^{-2} = \int 1000 \ \text{cm/sec}^2 \]

Gl. 94

Die erste Gleichung bezeichnet Reich als „ZEIT-Funktion“, da oszillierende Pendel „kosmische Zeitmesser“ darstellen. Bei der zweiten Gleichung, wo der freie Fall \(\downarrow \) ausgedrückt wird, handelt es sich um eine „RAUM-Funktion“ (Reich 1957b, S. 142).

Am Rande, der in Faksimile in Contact with Space abgedruckten Darstellung, finden wir handschriftlich hinzugefügte einfache Gleichungen (Reich 1957a, S. 108; Reich 1957, S. 143), wonach \(g_{Kr} \) sich zu \(p \cdot w = \varepsilon_\varphi \) verhält wie 1000 zu 100 bzw. 10 zu 1, woraus folgt:

\[g_{Kr} = \int 10 \ \varepsilon_\varphi \]

Gl. 95

Die 10 drückt also das Verhältnis zwischen der Kreiselwelle und der durch sie hervorgerufenen Schwerebeschleunigung aus.\(^{23}\)

\[^{23}\text{In diesem Zusammenhang ist erwähnenswert, daß die Inder } \pi = \sqrt{10} \text{ rechneten.}\]
<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dichte des Monde</td>
<td>(1/3 \cdot 10 \text{ g/cm}^3)</td>
</tr>
<tr>
<td>Gravitationskonstante</td>
<td>(2/3 \cdot 10^{-8} \text{ dyn cm}^2 \text{ g}^{-2})</td>
</tr>
<tr>
<td>Entfernung Sonne-Erde</td>
<td>(3/2 \cdot 10^{13} \text{ cm})</td>
</tr>
<tr>
<td>Masse der Sonne</td>
<td>(2 \cdot 10^{33} \text{ g})</td>
</tr>
<tr>
<td>Umlaufgeschwindigkeit der Erde</td>
<td>(3 \cdot 10^5 \text{ cm/sec})</td>
</tr>
<tr>
<td>Lichtgeschwindigkeit</td>
<td>(3 \cdot 10^{10} \text{ cm/sec})</td>
</tr>
<tr>
<td>Masse der Erde</td>
<td>(6 \cdot 10^{27} \text{ g})</td>
</tr>
</tbody>
</table>

Leider ist Harmans Aufstellung recht willkürlich. Beispielsweise fehlen die beiden SR-Werte für das Plancksche Wirkungsquantum \(h = 6,625 \cdot 10^{-27} \text{ erg sec}\) und \(h/2\pi = 1,054 \cdot 10^{-27} \text{ erg sec}\).

IV.1.f. Reichs Einheitensystem

Spätestens in diesem Abschnitt überschreiten wir die Grenze zwischen der qualitativen Orgonometrie, bei der es um die mathematische Erfassung von Qualitäten geht, und der quantitativen Orgonometrie, die sich um die objektive Messung subjektiver Eindrücke dreht.

Reich hat „zunächst willkürlich“ das „Org“ als Maßeinheit der Orgonenergie bestimmt: „Die Orgonenergie-Menge in einem Kubikfuß Rauminhalt, die der Aufrechterhaltung eines Temperaturunterschiedes \(T_0-T\) von 1° Celsius eine Stunde lang entspricht, gemäß der Formel: \(\text{Org} = (T_0-T) \cdot t \cdot f^3\). Dabei ist \(T_0-T\) die Temperaturdifferenz in Grad Celsius, \(t\) die Zeit in Stunden und \(f^3\) das Volumen in Kubikfuß“ (Reich 1948, S. 149). Mal abgesehen von den nichtmetrischen Einheiten Stunde und insbesondere Kubikfuß, macht diese Gleichung vom Dimensionsprodukt her keinerlei Sinn.

Später definierte Reich die Maßeinheit „T-Org“ als 1 K \((T_0-T)\) pro 256 sec. Also 4 „Org-Minuten“ zu je 64 sec, statt der einen Stunde der ursprünglichen Definition. Von Kubikfuß ist auch keine Rede mehr, zumal die Abbildung der ausgereiften \(T_0-T\)-Meßapparatur einen deutlich kleineren Orgonenergie-Akkumulator (ORAC) zeigt, wobei es sich genaustauschen auch gar nicht um einen ORAC handelt, sondern um eine mit dem Kontrollkasten im Aufbau identische Box, die lediglich auf ein sozusagen „externes“ ORAC-Element aufgesetzt ist (Reich 1951b, 21.24).

Der Quotient aus dem Zeit-Org im ORAC und außerhalb des ORAC ergibt die neue Einheit „Orgonenergie-Potential“ Op:

\[
\frac{\text{Zeit-Org}_{\text{ORAC}}}{\text{Zeit-Org}_{\text{Luft}}} = \frac{30 \text{ min.org.}}{15 \text{ min.org.}} = 2 \text{ Op}
\]

Das Op gibt nicht die Zeit an, in der eine festgelegte Ladungsmenge entladen wird (1 Org = 256 V), ist demnach kein Maß der Orgonenergie-Menge, sondern der Orgonenergie-Spannung, also des Ladungsgefälles zwischen ORAC und Luft oder aber auch zwischen dem Elektroskop innerhalb oder außerhalb des ORAC und der jeweiligen Umgebung des Elektroskops, wobei der Ladungsverlust \(E_o - E_r \) während der festgelegten Zeitspanne \(t \) bestimmt wird, woraus sich dann wiederum das Ladungsgefälle zwischen ORAC und Luft berechnen läßt (Reich 1948, S. 149-152; Reich 1951b, S. 22):

\[
\frac{t}{(E_o - E_r)_{\text{ORAC}}} = \frac{30 \text{ min}/(5 - 3) \text{ Teilstriche}}{t/(E_o - E_r)_{\text{Luft}}} = \frac{30 \text{ min}/(5 - 1) \text{ Teilstriche}}{= 2 \text{ Op}}
\]

In seinen Meßkurven gibt Reich die „atmosphärische Spannung“, also die Entladungszeit des Elektroskops in „Sec.Orgs.“ an, das T\(_o\)-T einfach in K (Reich 1948; Reich 1950e; Reich 1951e). Die Orgonomaten nach Reich haben durchgehend gleich ganz auf spezielle orgonometrische Einheiten verzichtet und einfach die „rohen“ Temperaturdifferenzen und Elektroskopdaten (Ablenkung des Elektroskop-Blättchens und Entladungszeit) angegeben.

Neben dem Verhältnis zwischen thermischem und elektroskopischem Org (Reich 1948, S. 152) wirft die Gleichsetzung von Org und „256 elektrischen Volt“ (Reich 1950b) Probleme auf. An sich ist das Volt, als Maß des Potentialunterschiedes, nämlich ein rein statisches Konzept, das um die Ladung und deren „elektrodynamische“ Bewegung ergänzt werden muß, damit man zu energetischen Formulierungen gelangen kann.\(^{24}\)

Zum Beispiel ergibt sich aus dem Verschieben einer elektrischen Ladung eine bestimmte Arbeitsenergie, die sich aus der Ladung und der Potentialdifferenz der beiden Punkte, zwischen denen die Ladung bewegt wird, errechnen läßt. Entsprechend benutzen die Hochenergiephysiker als SI-fremde Energieeinheit das Elektronenvolt eV. Diese atomphysikalische Einheit \(1 \text{ eV} = 4\pi \cdot 10^{-13} \text{ erg} = 1,60219 \cdot 10^{-19} \text{ J} \), also die Energie, die ein Elektron beim Passieren eines Potentialgefälles von 1 Volt gewinnt \((e = 4\pi \cdot 10^{-20} \text{ C}) \), paßt offensichtlich in das

Krubel-System. Außerdem können wir „die natürliche Einheit der Feldstärke (...) durch die Feldstärke eines Feldes definieren, das eine Energiedichte von

\[
\text{Ruheenergie eines Elektrons } [m_e c^2]
\]

\[
(\text{Compton-Wellenlänge des Elektrons } [h/m_e c^2])^3
\]

erzeugt. Diese Einheit ergibt sich für die elektrische Feldstärke zu \(4,0 \times 10^{17} \text{ V/m}^2\) (Wichmann 1978, S. 46f).

Reichs letzte veröffentlichte Ansätze zu einem organometrischen Einheitensystem unterstreichen nochmals, wie sehr es ihm darum ging, mit dem Krubel-System zu harmonieren. Hinsichtlich der VACOR-Röhren spricht er von der „Einheit der orgonotischen Impuls-Aktions-Fläche“ und schreibt dazu:

Um im Rahmen des Krubel-Systems zu bleiben, wurde die Plattenoberfläche derart ausgewählt, daß die Anzahl der durch die elektrische Spannung erregten und zur Impulsausgabe an das Geiger-Müller-Gittersystem führenden Quadratzentimeter entweder \(64 = 4^3 \text{ cm}^2\) oder \(2 \times 64 \text{ cm}^2 = 128 \text{ cm}^2\) groß ist. Jede Platte ist 16 cm lang und 4 cm breit. Die Oberfläche wird „IMPULSWIRKUNGSFLÄCHE“ genannt. Ihre Einheit beträgt 64 cm², EINE IMPULSWIRKUNGSFLÄCHE (1 IA). Somit hat eine Vacor-Röhre mit zwei Platten von 32 cm Länge und von 4 cm Breite eine gesamte Wirkungsfläche von \(2 \times 32 \times 4 = 256 \text{ cm}^2 = 4^4 \text{ cm}^2 = 4 \text{ IA. (Reich 1951c, S. 128f)}\)

Bei „speziellen, für die Theorie bedeutsamen“ Geigerzählungen hat Reich die Org-Minute = 64 Org-Sekunden verwand (Reich 1951c, S. 85). Außerdem benutzte er bei seinen Geigerzählern eine Krubel-Skalierung von 64, 256 und 4096 (Reich 1957b, S. 47f und S. 50f). Es werden sogar cpm von genau 1024 und 4096 angegeben (Reich 1951c, S. 50). Über den Geigerzähler kam er auch zu einer weiteren Definition des Org:

Im August 1948 ergaben Messungen mit einem elektronischen Autoscaler 4096 (Tracerlab) 10 000 bis 12 000 Impulse pro Sekunde bei einer Triggerspannung von 500 Volt und einer 4096er Skalierung. Dies sind immense Energien, wenn man die Äquivalenz von 10 Volt pro Impuls oder von 50 bis 70 Volt pro 3000 cpm berücksichtigt. Derzeit (1951) ist mit bestimmten Vacor-Röhren unter günstigen atmosphärischen Bedingungen eine Abgabe von 20 000 bis 25 000 Impulsen pro Sekunde zu erzielen. Es wurde vorgeschlagen, die Abgabe von 25 000 cps ein Reich-Org zu nennen, entsprechend \(4^2 \times 10^5 \text{ cpm} \) (eine Org-Minute = 64 Sekunden). (Reich 1951c, S. 129)
IV.2. Das System der physikalischen Einheiten

IV.2.a. Physik, Physiologie, Psychologie

Das seit 1960 geltende Internationale Einheitensystem *Système International* SI kennt folgende sieben physikalische Basisgrößen:

<table>
<thead>
<tr>
<th>Basisgröße</th>
<th>Basiseinheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeit</td>
<td>t</td>
</tr>
<tr>
<td>Länge</td>
<td>L</td>
</tr>
<tr>
<td>Masse</td>
<td>m</td>
</tr>
<tr>
<td>Stromstärke</td>
<td>I</td>
</tr>
<tr>
<td>Temperatur</td>
<td>T</td>
</tr>
<tr>
<td>Stoffmenge</td>
<td>n</td>
</tr>
<tr>
<td>Lichtstärke</td>
<td>Iₓ</td>
</tr>
</tbody>
</table>

Die Reihe Abb. 27 ist keine bloß formale Konvention, sondern impliziert eine hierarchische, bzw. funktionelle Ordnung. Zunächst muß die Sekunde sec und das Meter m definiert werden. Das Meter wiederum ist Voraussetzung für die Definition des Kilogramms kg. Erst mit dem Kilogramm schließlich können wir das Ampere A, das Kelvin K, die Stoff-/Objekt-/Teilchenmenge mol und das Candela cd bestimmen.

Außerdem impliziert diese Reihe eine logische Abfolge von physikalischen über physiologische hin zu psychologischen Größen:

a.) addierbare Mengengrößen: Zeit, Länge, Fläche, Volumen, Masse, Gewicht, Wärmemenge, Elektrizitätsmenge, etc.;

b.) nicht addierbare „intensive“ aber immer noch objektive Skalengrößen: Temperatur, Tonhöhe, Flächenhelligkeit, etc.; und schließlich

c.) mathematisch nicht beschreibbare subjektive Sinneswahrnehmungen wie Farben, Töne, Gerüche, Gefühle, etc.

Aus orgonometrischer Sicht besonders bemerkenswert ist der Umstand, daß man es bei den „objektiven“ Größen mit „Mengen“, d.h. Quantitäten zu tun hat, die durch kontinuierliche Übergänge gekennzeichnet sind. Bei den „subjektiven“ Qualitäten handelt es jedoch um diskontinuierliche Gegensätze, die sich wie in Kapitel I erläutert anordnen. Die Orgonometrie hat genau diesen „psychologischen“ Blick auf die Welt, in der sich die „kontinuierlichen“ Größen zu funktionellen Ganzheiten gruppieren, die auf zwei Grundgrößen reduzierbar sind, die sich wiederum, wie wir in Kapitel V
sehen werden, gemäß unserer „psychosomatischen“ Grundgleichung Gl. 20
zueinander verhalten. Auf dieser Grundlage läßt sich die gesamte Physik
rekonstruieren.

IV.2.b. Die Sekunde

Die Sekunde (sec) ist eine der beiden Basiseinheiten, von denen das gesamte
Einheitensystem abhängt. Deshalb muß sie eine funktionelle Bedeutung haben, die
von allen anderen Basiseinheiten unabhängig ist.

Zunächst ist zu konstatieren, daß sie nicht auf einem von Menschenhand
geschaffenen Prototyp beruht. Harman weist darauf hin, daß die sec der ungefähre
Herzschlag eines durchtrainierten Menschen ist. „Andere Kulturen beziehen
Zeiteinheiten auf den Puls und Galilei verwendete diese Zeiteinheit im ersten
bekannten ‘Pendel-Experiment’“ (Harman 1984). Säuglinge werden am besten
beruhigt, wenn man sie einmal pro sec wiegt und dieses Zeitmaß entspricht auch der
Frequenz der Gehens (Eibl-Eibesfeldt 1984, S. 271). Weil, vereinfacht gesagt, unser
Gehirn im selben Rhythmus schwingt, übt das Ticken der Uhr eine ausgesprochen
beruhigende Wirkung auf viele Menschen aus, desgleichen Musikstücke mit einem
Tempo von 55 bis 65 Taktschlägen in der Minute. Hierhin gehören auch die Kurzzeit-
Verhaltenswiederholungen, ein interkulturelles Grundmuster menschlichen
Verhaltens; das „Drei-Sekunden-Phänomen“, bei dem innerhalb dieser universellen
Zeitkonstante rhythmisch wiederholte Verhaltenselemente mindestens dreimal
hintereinander erfolgen (Heymer 1995, S. 162).

Bereits die Babylonier haben den Tag zwischen Sonnenaufgang und -untergang
entsprechend den zwölf Tierkreiszeichen in zwölf Abschnitte eingeteilt. Diese
Abschnitte waren je nach Jahreszeit unterschiedlich lang. Daraus entwickelte sich
schließlich die fixe Stunde, die genau 24 mal in den Tag paßt. Wir haben hier eine
weitere Tetraktys vor uns: $1 \cdot 2 \cdot 3 \cdot 4 = 24$. Wann die Stunde entsprechend
dem babylonischen Sexagesimalsystem (Basiszahl 60) in 60 Minuten (nach dem
lateinischen Wort „minutus“ für „klein“) eingeteilt wurde, ist unbekannt. Aufgrund der
Entwicklung mechanischer „tickender“ Uhren wurde um 1500 die Sekunde als zweite
Untereinheit der Stunde eingeführt. Entsprechend hieß die Minute damals „minutae
primae“, die Sekunde folglich ursprünglich „minutae secundae“.

Bis 1956 wurde die sec als 86 400ster Teil des mittleren Sonnentages definiert, also
auf die Kr2-Zahlen 4, 100 und die Kreiszahl 6 zurückgeführt: $4 \cdot 6 \cdot 6 \cdot 6 \cdot 100
= 86 400$. Man beachte dabei die beiden Tetraktys $4 \cdot 6 = 24$ und $6 \cdot 6 = 36$.

Reich selbst führte die Sekunde auf die Kreiszahl π zurück, denn mit einer
Abweichung von nur 0,45% gilt (Reich 1957b, S. 107):

$$2rKr \cdot 10^7 \approx \pi eS$$
Wobei \(2rKr\) (2r ist der Durchmesser des Kreises) gleich \(\pi\) ist; \(eS\) steht für die Sekunden des Erdenjahres und \(\omega\) für den Schwung, also eine jährliche KRW-Umkreisung der Erde um die Sonne.

IV.2.c. Das Meter

Was nichtmetrische Längenmaße betrifft, ist es ein Anachronismus, daß das englische *foot* in der thermischen Orgonometrie eine Rolle spielt (wie wir bereits gesehen haben) oder daß Reich gar bei den Cloudbuster-Röhren eine Länge von 16 *feet* bevorzugte (Eden 1986, S. 23). Immerhin kommt das englische *foot* mit 3,048 dm einer SR-Zahl nahe. Das *inch* paßt etwa 4 • 10 mal in den Meter. Interessant ist auch, daß die Landmeile ca. \(4^2 \cdot 10^4\) cm entspricht. Betrachtet man die entsprechenden nichtmetrischen Flächenmaße, hat man ein fast perfektes \(Kr\)-System vor sich: 1 square mile = 640 acres, 1 acre = 4 roods = 160 square perches = 4840 square yards = 4046 m².

Ursprünglich wurden Längeneinheiten dem menschlichen Körper entlehnt: Mannslänge, Klafter (ausgebreitete Arme), Schritt (den wir bereits mit der Sekunde verknüpft haben), Elle, Fuß, Hand- und Fingerbreite, außerdem Wegstunde und Tagesmarsch. Die älteste bekannte Längeneinheit ist um 2000 v.Chr. der sumerische und ägyptische Fuß, der in 16 Fingerbreiten bzw. Zoll eingeteilt war. Die ägyptische Elle hatte 6 Handbreiten zu wiederum je vier Fingern, d.h. eine Elle hatte 24 Finger.\(^{25}\) Der römische Fuß („Pes“) war in 4 Hände („Palmi“) und 16 Finger

(„Digiti“) eingeteilt. In manchen Regionen Deutschlands gab es im Mittelalter als Einheit die Rute zu 16 Fuß.

Christian Huygens (1629-1695) definierte 1664 die „Länge des Sekundenpendels“ als „natürliche Längeneinheit“. Er schlug das „pes horarium“ (Stundenfuß), also 1/3 des Sekundenpendels (33,1 cm), als neue Basiseinheit der Länge vor. Etwa zur gleichen Zeit kam der Gedanke auf, Einheiten dezimal zu unterteilen. 1791 wurde dann in Frankreich das Meter und das Dezimalsystem offiziell verbindlich. Da, wie bereits erwähnt, die „Länge des Sekundenpendels“ von Ort zu Ort unterschiedlich ist, wurde der zehnmillionste Teil des Erdquadranten (die Entfernung zwischen Nordpol und Äquator) als Meter definiert und ein entsprechender „Urmeter“ aus Platin hergestellt.

Der „Kr-Charakter“ des Meters wird besonders gut am Begriff „Quadranteinheitsystem“ deutlich. Mit der ungeheuren Basiseinheit für die Länge von \(10^9\) cm = 10 000 km = Erdquadrant wollte Maxwell im 19. Jahrhundert erreichen, daß die daraus abgeleiteten elektrischen Einheiten in einer für den praktischen Gebrauch vernünftigen Größenordnung lagen. Unter anderem geht auf das Quadrantsystem die 1881 eingeführte Einheit Volt zurück („die Einheit der Spannung im Quadranteinheitsystem“), auf deren zentrale Bedeutung für Reich bereits eingegangen wurde. Reich zufolge ist das Volt die einzig adäquate Einheit für die Orgonenergie – was von den \(10^9\) cm her betrachtet evident ist, als es auf den ersten Blick den Anschein hat.

Ab 1889 wurde auf die Verbindung zum Erdumfang verzichtet und das Meter pragmatisch anhand des Platin-Urmeters definiert. Das Meter verlor also den Charakter einer Größe, die direkt von einer Naturkonstanten abhängig ist. Doch 70 Jahre später, 1960, wurde das Meter erneut auf eine Naturkonstante, die Wellenlänge einer bestimmten Spektrallinie des Krypton-86-Atoms, und 1983 schließlich konsequentweise gleich auf die Vakuumlichtgeschwindigkeit zurückgeführt: die Länge der Strecke, die per Definition das Licht in genau \(299792458\) sec durchläuft. Damit wurde das Meter als unabhängige Einheit eliminiert und über die Sekunde definiert: ein Meter ist gleich dem 300 millionsten

\[\frac{26}{26} \text{ Neben diesem „vier ten Teil eines Kreises“ gibt es eine weitere erhellende Verbindung zwischen Meter und Kreis: im Militärwesen gilt } 360° = 64 00" \text{ (artilleristische Strich oder mils). Bei einem Kreis mit dem Radius 1000 m ist dann (bis auf 2 cm genau) } 1 \text{ m } = 1" \text{ nach der Formel Kreisumfang } U = 2 \pi r = 6400 \text{ m. Im Zusammenhang mit dem Erdumfang ist auch die bemerkenswerte Tatsache interessant, daß ein eng um den ganzen Äquator gelegtes Band nach Verlängerung um nur einen Meter plötzlich vom Erdboden um } \frac{1}{2} \pi \text{ m, d.h. etwa } 16 \text{ cm absteht würde“ (Thiel 1995, S. 321).} \]

Andererseits haben wir gesehen, daß das Meter vollkommen unabhängig von der Sekunde abgeleitet werden kann. Dies deutet auf das doppeldeutige Verhältnis der beiden Grundeinheiten Sekunde und Meter bzw. der beiden Grundgrößen Zeit und Raum hin, auf das wir in Kapitel V näher eingehen werden.

IV.2.d. Das Dreiersystem

Nach Einsteins E = mc² kann man das Kilogramm auch als Energieäquivalent auffassen:

\[1 \ kg = 8,987551787 \cdot 10^{16} \ J = 5,60959 \cdot 10^{35} \ eV \]

Zu einem ähnlichen Ergebnis führt uns die klassische Mechanik, wenn wir Newtons Gravitationsgesetz betrachten:

\[m = \frac{g \cdot r^2}{f} \]

27 Bemerkenswerterweise gilt 300 000 km/sec = 1 080 000 km/h.
Der rechte Teil dieser Gravitationsgleichung, mit der (Schwere-)Beschleunigung g und dem Quadrat des Abstandes von der Gravitationsquelle \(r^2 \), wird masselos, wenn wir den Proportionalitätsfaktor, also die Gravitationskonstante \(f \), dimensionslos gleich i setzen.\(^{28}\) Dergestalt verwandeln wir die Einheit der Masse.

Diese neue Masseneinheit leitet sich aus den Grundeinheiten cm und sec ab und besitzt die Dimension \([\text{der masselosen Energie}] \, \text{cm}^3/\text{sec}^2\). Sie ist gleich derjenigen Masse, die einer ihr gleichen Masse im Abstand von 1 cm die Beschleunigung von 1 cm/sec\(^2\) erteilt. Bezeichnen wir diese Masseneinheit mit \(\mu \), so können wir

\[
f = 6,67 \cdot 10^{-8} \, \text{cm}^3/\text{g} \cdot \text{sec}^{-2} = 1 \, \text{cm}^3/\mu \cdot \text{sec}^{-2}
\]

schreiben. Daraus folgt \(\mu = 1,5 \cdot 10^7 \, \text{g} = 15 \, \text{t} [\text{Tonnen}] \).

Grundsätzlich ist es (...) möglich, ein Maßsystem aufzubauen, in dem nur die Einheiten von Länge und Zeit beliebig wählbar sind, während für alle übrigen Größen, darunter die Masse, abgeleitete Einheiten gebildet werden können. (Landau Lifschitz 1970, S. 46f)

Auf eine ähnliche Weise hat Rosenblum (C.F. Baker) die Beziehung zwischen einer gegebenen Masse \(m \) und der Gravitationsenergie, die auf die „Energie des Schwungs“ zurückgeht mit folgender Gleichung bzw. folgendem „Dimensionsprodukt“ beschrieben:

\[
m \, \text{L}^3/\text{t}^2
\]

Gl. 96

Daraus läßt sich dann Newtons Gravitationsgleichung ableiten (Baker 1968b).

Bakers Gleichung ist problematisch, denn Reich zufolge sind Masse und Länge statische Funktionen (Reich 1951d), während die masselose Energie

\[
E \, \text{L}^3/\text{t}^2
\]

Gl. 97

eine dynamische Funktion ist. Bakers Ansatz entspricht der Einsteinschen Gleichsetzung von Energie und Masse \((E = m \, c^2)\). Doch gegen dieses Verwischen der Grenze zwischen einer tieferen Funktionsebene (dynamische Energie) und einer höheren (statische Masse) hat sich Reich ausdrücklich gewandt (Reich 1996, S. 15). Reich glaubte, wie bereits erwähnt, aufgrund seiner Pendlexperimente die Größe \(m \) durch die Größe \(L \) (wie erläutert sind beides statische Funktionen) ersetzen zu können, indem er die Kr\(^x\)-Elemente mit den Atomgewichten 1, 4 und 16 (H, He, O)

\(^{28}\) An sich müßten die Dimensionen der physikalischen Größen mit „1“ (dimensionslos: „Größen der Dimension Eins“) und „l“ (Länge) angegeben werden. Um jedoch Verwechslungen (auch mit „l“) in jedem Fall auszuschließen, werden hier diese Größen mit „i“ und „L“ angegeben.
durch die Kr²-Pendellängen von 1, 4 und 16 cm ersetzte. Aufgrund der Veröffentlichungslage sind Reichs entsprechende Gedankengänge nur sehr schwer nachzu vollziehen.²⁹ So schrieb William Moise denn auch am 20. März 1956 an die CIA über das Manuskript „Das ergonomische Pendelgesetz“: „Der Inhalt ist extrem wichtig, aber ohne weitere Informationen vollkommen unverständlich für die mechanistische Astrophysik“ (Reich 1956, S. 104). Jedenfalls gilt Gl. 31.

IV.2.e. Elektromagnetismus

Um das alte Dreiersystem, bzw. „cgs-System“ Zentimeter-Gramm-Sekunde auch auf den Elektromagnetismus auszudehnen, erweiterte man es zunächst zu zwei Vierersystemen: Länge-Masse-Zeit-elektrische Feldkonstante ε_0 bzw., im zweiten Vierersystem, magnetische Feldkonstante μ_0. Durch das jeweilige Gleichsetzen der Basisgrößenarten ε_0 bzw. μ_0 mit dimensionslos gleich i hatte man dann zwei erweiterte cgs-Dreiersysteme vor sich: das elektrostatische cgs-System (das aus dem um ε_0 erweiterten cgs-System hervorgegangen ist) und das elektromagnetische cgs-System (μ_0). Beim „symmetrischen“ Gaußschen Dreiersystem werden elektrische Größen über das elektrostatische System und magnetische Größen entsprechend über das elektromagnetische System beschrieben.

Leider hat das 1948 international eingeführte Vierersystem Meter-Kilogramm-Sekunde-Ampere (MKSA), der Kern des SI, diese Symmetrie wieder gebrochen, indem das Ampere A als eigenständige Basiseinheit eingeführt wurde. Die Definition des Ampere erfolgt über die Kraft $(2 \cdot 10^{-7} \text{ N})$, die zwei stromdurchflossene Leiter im Abstand von 1 m aufeinander ausüben. Diese Kraft ist direkt proportional zur magnetischen Feldkonstante μ_0. Die Definition des Ampere A ist damit identisch mit der Festsetzung der absoluten Permeabilität des Vakuums:

$$\mu_0 = 4\pi \cdot 10^{-7} \text{ N} \cdot \text{A}^{-2}$$

Dadurch ist bedingt, daß im „technischen“ MKSA- bzw. SI-System anders als im „physikalisch“ ausgerichteten Gaußschen System die elektrischen und magnetischen Einheiten (z.B. die elektrische Feldstärke E und die magnetische Feldstärke H) unterschiedliche Dimensionen erhalten, so daß, obwohl das neue Einheitensystem natürlich formal in sich vollkommen konsistent und widerspruchsfrei ist, die funktionelle Analyse hintertrieben wird. Aus diesem Grunde bleiben wir im folgenden, wie übrigens in der Theoretischen Physik gang und gäbe, beim alten symmetrischen Gaußschen System.

²⁹ 1945 notierte sich Reich: „Energie wird von der Anzahl der Wellenlängen und Schwingungen pro Zeiteinheit bestimmt, während Masse von der Schwerkraft bestimmt wird. Wenn also Masse sich aus schwingender Energie entwickelt, muß sich die ursprüngliche Länge der Energiewelle im Gewicht der Masse zeigen“ (Reich 1999, S. 290).
Aber auch im Gaußschen System ist eine funktionelle Analyse nicht unproblematisch. Zunächst muß analog zu Newtons Gravitationsgleichung die mechanische Kraft \(F \) mit der elektrostatischen Ladung \(Q \) verknüpft werden:

\[
F = \frac{Q_1 \cdot Q_2}{\varepsilon_0 \cdot r^2}
\]

Setzen wir \(\varepsilon_0 \) dimensionslos gleich \(i \) ergibt dies den folgenden mechanischen Ausdruck für \(Q \):

\[
Q = (F \cdot r^2)^{1/2} = L^{1/2} \cdot m^{1/2} \cdot t^{-1} \cdot L
\]

Da die Stromstärke \(I \) als die Übermittlungsrate \((t^{-1}) \) von \(Q \) definiert wird, erhalten wir eine Gleichung, in der sich die SI-Basisgröße \(I \) auf die zwei masselosen orgonometrischen Grundbasisgrößen reduziert. Mit Gl. 31 haben wir zunächst

\[
I = L^{3/2} \cdot m^{1/2} \cdot t^{-2}, \text{ woraus folgt:}
\]

\[
I = \frac{L^2}{t^2} \quad \text{Gl. 98}
\]

Bei dieser Ableitung haben wir die radiale „kugelförmige“ Ausbreitung des Feldes der elektrostatischen Ladung \(Q \) beschrieben. Nun würde in weiteren davon abgeleiteten Formulierungen, die nicht-sphärischen „gradlinigen“ elektromagnetischen Vorgängen gelten, der numerische Faktor \(4\pi \) auftauchen. Eine entsprechende Sachlage wäre entstanden, wenn die Einheit Fläche nicht als die Fläche eines Quadrats mit Seiten der Einheit Länge definiert worden wäre, sondern als die Fläche eines Kreises mit der Einheit Radius. Die Fläche des Kreises – das, wie Proben zeigt, dem Quadrat des Radius \(r \) proportional ist – wäre dann gegeben als \(A = \pi r^2 \) anstatt \(A = \pi x^2 \), und die Fläche eines Rechtecks mit den beiden Seitenlängen \(a \) und \(b \) wäre gegeben als \(ab/\pi \). Da jedoch \(\pi \) per Definition mit einem Kreis verbunden ist, ist es unpassend, daß es in der Formel für die Fläche eines Rechtecks auftaucht, hingegen nicht in der Formel für die Fläche eines Kreises. (Massey 1986, S. 51)

Aus diesem Grund finden sich im Gaußschen System die beiden mit dem Kreis verbundenen Zahlen \(4 \) und \(\pi \), was an Reichs Beschreibung des geradlinigen freien Falls Gl. 92 gemahnt. Doch leider wurden nach Aufgabe der cgs-Einheiten die elektromagnetischen MKSA-Einheiten „rationalisiert“ und, wie oben bereits beim Ampere gezeigt, bei den Definitionen von vornherein der Faktor \(4\pi \) als Teil des Proportionalitätsfaktors eingesetzt. Damit war ein verborgener Hinweis auf die Kreiselwelle eliminiert.
IV.2.f. Thermodynamik und physikalische Chemie

Dieser Bereich der Physik spielt eine zentrale Rolle in der Orgonomie, da die Temperatur das Niveau der Entropie angibt und ja gerade die Verletzung des 2. Thermodynamischen Gesetzes durch den Orgonenergie-Akkumulator der Dreh- und Angelpunkt der Orgonphysik ist. Spontan bildet sich ein Orgonomisches Potential, d.h. eine größere Energiekonzentration = höhere Temperatur. Oder anders ausgedrückt: T ist ein Maß für die innere Energie eines Körpers. Mechanistisch wird das so ausgedrückt:

\[T = \frac{1/3 \, m \, v^2}{k} \]

(Boltzmann-Konstante \(k = 1,38 \times 10^{-16} \text{ erg/K} \), orgonometrisch:

\[T \equiv \sqrt[3]{\frac{L^3}{t^2}} \]

Gl. 99

Die Zahlenfolge 273 zeigt, daß Celsius‘ Gradeinteilung eine tiefere funktionelle Bedeutung hat, denn der Ausdehnungskoeffizient \(\alpha = 1/273,15 \text{ K}^{-1} = 0,00366 \) hat, ähnlich wie die Sekunde, ganz offensichtlich eine Verbindung zum „Erdjahrschwing“: 1/365,25 = 0,00273, sowie zur Quadratur des Kreises (\(\pi \)), denn das Maßverhältnis eines Quadrats zum eingeschlossenen Kreis beträgt auf den Kreis bezogen 0,273 (Stelzner 1996, S. 283-285).

Nach dem cm und dem g ist somit das K die dritte Einheit, die mit dem Orgonenergie-Äquivalent H2O, dem Planeten Erde und der Kreisfunktion verknüpft ist. Indirekt trifft das auch auf die folgende Basiseinheit zu, die geändert werden würde, wenn die Einheit der Masse wechselte:

Ergänzen wir die Größen der Thermodynamik (Zeit, Länge, Masse und Temperatur) mit der Größe „Stoffmenge“ n, betreten wir den Bereich der physikalischen Chemie.
Hier wird die Materie nicht nur von ihrem Volumen und ihrer Masse her betrachtet, sondern von ihrem atomaren bzw. molekularen Aufbau, d.h. konkret von der Teilchenzahl.

Für die Orgonomie ist dieser Bereich deshalb so interessant, weil hier genau das getan wird, was Reich zur Grundlage seines Pendelexperiments machte: die Atomgewichte werden mit den Größen Länge (bzw. Volumen) und Masse verknüpft.30 Dabei muß stets angegeben werden, um welche Art der elementaren Teilchen es sich bei den Konstituenten der jeweiligen Materie handelt. Zwar entspricht grundsätzlich jedes Mol $6,0250 \cdot 10^{23}$ Teilchen (Atome oder Moleküle aber auch Ionen, Elektronen, etc.), jedoch ändert sich das Gewicht je nach Teilchenart: 1 mol O entspricht 16 g O, 1 mol O$_2$ entspricht 32 g O$_2$, 1 mol H$_2$O entspricht 18 g H$_2$O. Andererseits wird jedoch (jedenfalls bei Gasen) von jedem Mol (bei gleichem Druck und bei gleicher Temperatur) das gleiche Raumvolumen eingenommen. Das „molare Normvolumen“ (Druck 101,325 kPa, Temperatur 0°C) beträgt 22,42410 m3/kmol.

Bevor die Stoffmenge als eigenständige Basisgröße eingeführt wurde, war sie nichts anderes als eben „Stoff-Menge“ mit der Dimension einer Zahl i:

\[
\begin{align*}
\text{n} & \quad \int i \\
& \quad \text{Gl. 100}
\end{align*}
\]

IV.2.g. Physiologische Einheiten

Die Einheit Candela cd der Basisgröße Lichtstärke I_v, wird weder über Prototypen oder Naturkonstanten noch über physikalische Gesetze definiert, sondern über einen physikalischen Zustand: die Erstarrungstemperatur des Platins. Im Grunde ist I_v einfach nur die Strahlungsleistung einer bestimmten Lichtquelle. Wenn wir I_v entsprechend mit alten photometrischen Größen gleichsetzen, erhalten wir:

\[
\begin{align*}
I_v & \quad \int L^3/t^3 \\
& \quad \text{Gl. 101}
\end{align*}
\]

30 Ursprünglich, 1898, war es sogar so, daß die Einheit der Stoffmenge, das Mol, ganz Kr*-konform auf der Basis des atomaren Sauerstoffs definiert wurde (seit 1960 nimmt man Kohlenstoff).
Aus orgonomischer Sicht ist die Lichtstärke I von herausragendem Interesse, da sich hier in der mechanistischen Physik erstaunlicherweise objektiv Physikalisches und subjektiv Physiologisches mischen. Formal ganz ähnlich hat Reich beim Licht zwischen der sich mit Lichtgeschwindigkeit ausbreitenden elektromagnetischen Erregung und der lokalen Erstrahlung unterschieden (Reich 1949a).

Diese Parallelität von mechanistischer und Orgonphysik findet sich auch in der Dosimetrie. In der mechanistischen Physik unterscheidet man zwischen der radioaktiven Energiedosis, die in Gray Gy gemessen wird und der Äquivalentdosis, die die Wirkung auf lebendes Gewebe angibt: das Sievert Sv. Es wird erwogen, das Sv neben dem cd als physiologische Einheit in das SI-System aufzunehmen (Nelson, Ruby 1993). Womit folgende historische Entwicklung ihren Abschluß finden würde, die zu der Zeit anfing, als Reich sein ORANUR-Experiment in Angriff nahm:

$$1 \text{ rd} = 100 \text{ erg/g} = 0,01 \text{ Gy}$$

1962 wurde die Einführung der Größe „dose equivalent“ (Dosisäquivalent) empfohlen, was aber erst 1973 offiziell erfolgte. Die Einheit erhielt den Namen „roentgen equivalent man“ (biologisches Röntgenäquivalent) Rem, wurde jedoch bereits 1979 durch das Sv ersetzt:

$$1 \text{ rem} = 100 \text{ erg/g} = 0,01 \text{ Sv}$$

Das ergibt für die zur SI-Einheit gehörenden Größe Äquivalentdosis D_q:

$$D_q = \frac{L^2}{t^2}$$

Gl. 102

Von der mechanischen Energiedosis D unterscheidet sich die biologische Äquivalentdosis D_q durch den dimensionslosen Bewertungsfaktor q, der in Sv/Gy angegeben wird. Er kennzeichnet die empirisch festgelegte biologische Wirksamkeit der verschiedenen radioaktiven Strahlungsarten und kann dementsprechend durchaus als mechanische Entsprechung des „ORANUR-Faktors“ betrachtet werden. „Zu seiner Festlegung für die verschiedenen Strahlungsarten bezieht man sich auf Muskelgewebe bestimmter Zusammensetzung. Vielfach ist es jedoch ausreichend, für die biologische Bewertung der einzelnen Strahlungsarten obere Grenzwerte von q festzulegen“ (Hänsel, Neumann 1995 S. 380). Die empfohlenen Grenzwerte lauten:

31 Reichs Das Oranur-Experiment. Erster Bericht fängt mit der Beschreibung subjektiver Lichteindrücke an und endet mit der Schilderung der Auswirkungen radioaktiver Strahlung auf den menschlichen Organismus (Reich 1951c).
IV.2.h. Das organometrische Dimensionsprodukt

Mit der Dimensionsanalyse und dem sogenannten „Dimensionsprodukt“ haben wir uns bereits kurz in Kapitel I beschäftigt. Dieser Ansatz geht auf den Physiker Lord Rayleigh (1842-1919) zurück. Das besondere an Rayleighs Methode liegt darin, daß in den Gleichungen der Physik zwar vom Zahlenwert her alles stimmen kann, sich jedoch, was letztendlich viel wichtiger ist, bei einer physikalischen Analyse die mathematische Gleichung als unsinnig erweist. Umgekehrt können Gleichungen vom Ergebnis zwar falsch sein, dafür jedoch das physikalische Geschehen qualitativ richtig wiedergeben, da auf der rechten und linken Seite der Gleichung die gleichen Dimensionsprodukte zu finden sind. Diese Priorität des Qualitativen über dem Quantitativen entspricht jener Argumentationslinie, die Reich für die Orgonometrie in „Complete Orgonometric Equations“ ausbreitet (Reich 1951d).

\[
\text{erg} = m \cdot L^2 \cdot t^{-2}.
\]

Mechanische Energie sei das Produkt von Kraft (cgs-Einheit \[\text{dyn} = m \cdot L \cdot t^{-2}\]) und zurückgelegter Distanz (L): mLt⁻² • L. Dies ist, Reich zufolge, das Gemeinsame Funktionsprinzip von Energie und Arbeit:
Die Frage, woher denn die „Kraft“ stamme, beantwortet Reich in einem anderen Zusammenhang. In „Complete Orgonometric Equations“ führt er aus, daß man Energie auch als Produkt von Impuls \(p = m \cdot c \) und Geschwindigkeit \(c = L \cdot t^{-1} \) betrachten kann, also als sich bewegende Impulse (Reich 1951d), wie bereits in Kapitel I im Zusammenhang mit Abb. 11 ausgeführt:

\[
E = p \cdot c \quad \text{Gl. 104}
\]

In „Der Schwung“ (Reich 1957b, S. 129-135) schließlich zeigt er den masselosen Ursprung von Kraft und Bewegung auf:

\[
\xi = p \cdot W = \lambda c \cdot \lambda s \quad \text{Gl. 105}
\]

\(p \) ist die masselose primordiale Pulsfunktion (ihrerseits Produkt aus Wellenlänge \(\lambda \) und Wellengeschwindigkeit \(c \)) und der primordialen Wellenfunktion \(W \) (Produkt aus \(\lambda \) und der Wellenfrequenz \(s \)).

Da Reich des weiteren die Größe \(m \) mit \(L \) funktionell gleichgesetzt hat, reduzieren sich alle zusammengesetzten physikalischen Größen, die durchweg nur „abstrakte Begriffe“ sind, auf die beiden einzig „wirklichen“, d.h. tatsächlich gemessenen, Grundgrößen Länge \(L \) und Zeit \(t \). Was nacheinander oben für alle sieben Basisgrößen des internationalen Einheitensystems SI vorerzügt wurde. Wie dies für die restlichen gängigen physikalischen Größen aussieht, zeigt die folgende Aufstellung:

i - DIMENSIONSLOS

„Menge“: Wirkungsgrad \(\eta \), Stoßzahl \(k \), mechanische Reibungszahl \(\mu \), elektrische Permittivität \(\varepsilon \), magnetische Permeabilität \(\mu \), magnetische Suszeptibilität \(\chi \), relative Feuchte \(\varphi \), Entropie \(S \), Wärmekapazität \(C \), molare Wärmekapazität \(C_m \), molare Gaskonstante \(R_m \), Boltzmann-Konstante \(k \), Stoffmenge \(n \), Avogadro-Konstante \(N_A \), Lichtausbeute \(\eta' \), radioaktiver Bewertungsfaktor \(q \)
t - ZEIT
„Eigenbewegung gegen Fremdbewegung“: Fluidität \(\varphi \), spezifischer elektrischer Widerstand \(\rho \), Beweglichkeit von Ladungsträgern \(\mu \), spezifischer Wärmewiderstand \(R_{th} \)

i/t - FREQUENZ
„Fremdbewegung gegen Eigenbewegung“: Frequenz \(f \), Winkelgeschwindigkeit \(\omega \), Abklingkoeffizient \(\delta \), dynamische Viskosität \(\eta \), elektrische Feldstärke \(E \), magnetische Feldstärke \(H \), elektrische Flächenladungsdichte \(\sigma \), elektrische Verschiebungsichte \(D \), magnetische Induktion/Flußdichte \(B \), spezifische elektrische Leitfähigkeit \(\chi \), elektrische Polarisation \(P \), magnetische Polarisation \(J \), Magnetisierung \(M \), Wärmeleitwert \(\Lambda_{th} \), Radio-aktivität \(A \)

\(t^2 \) - „Ausdehnungsfähigkeit und Zusammendrückbarkeit“: Dehnungszahl \(\alpha \), Kompressibilität \(\chi \)

i/t^2 - „Druck“: Winkelbeschleunigung \(\alpha \), Druck \(p \), mechanische Spannung \(\sigma \), Elastizitätsmodul \(E \), Kompressionsmodul \(K \), Schubmodul \(G \), räumliche Energiedichte \(w \), elektrische Stromdichte \(j \); i/t^3 - Leistungsdichte \(p \)

L - LÄNGE
„Äquivalent zur Masse“: Wellenlänge \(\lambda \), elektrische Kapazität \(C \), magnetische Induktivität \(L \), elektrische Zeitkonstante \(\tau \), magnetische Polarisation \(J \), magnetischer Leitwert \(P \), radioaktiver Massenschwächungskoeffizient \(\mu_m \)

i/L - „Massenabhängigkeit“: spezifische Gaskonstante \(R \), spezifische Wärmekapazität \(c \), radioaktiver linearer Schwächungskoeffizient \(\mu \)

L^2 - FLÄCHE (A)
i/L^2 - „Ergebnis der Kontraktion“: mechanische Dichte \(\rho \), Massenkonzentration \(c \), absolute Feuchte \(f \)

L^3 - VOLUMEN (V)
„Massenäquivalent“: Massenträgheitsmoment \(J \), Joule-Thomson-Koeffizient der Wärmelehe \(\mu \), molares Volumen \(V_m \)

i/L^3 - „Volumenabhängigkeit“: Ladungsträgerdichte \(n \), Stoffmengenkonzentration \(c_m \), Loschmidt-Konstante der Wärmelehe \(N_L \)

L/t - GESCHWINDE
„Bewegung aufgrund eines Potentialunterschiedes“: Geschwindigkeit \(v \), Massenstrom \(q_m \), Dämpfungskonstante \(\beta \), elektrische Spannung \(U \), elektrischer Leitwert \(G \), elektrisches Potential \(\varphi \), magnetische Durchflutung/Spannung \(V \), magnetisches Vektorpotential \(A \), Peltier-Koeffizient \(\Pi \), Ionendosis \(J \)

t/L - „Widerstand gegen Bewegung“: elektrischer Widerstand \(R \), elektrochemisches Äquivalent \(\tilde{A} \)

L • t - „Widerstand gegen Bewegung“: Wellenwiderstand \(Z \), spezifischer Wärmewiderstand \(\rho_{th} \)

i/L • t - „Unterstützung von Bewegung“: Wärmeleitfähigkeit \(\lambda \), elektrische Raumladungsdichte \(\eta \), spezifische Radio-aktivität \(a \)

i/L^2 • t - „Übertragungspotential“: Wärmeübergangskoeffizient \(\alpha \), Wärmedurchgangskoeffizient \(\kappa \)

L/t^2 = L/t • i/t - BESCHLEUNIGUNG
„Änderung von Bewegung“: Beschleunigung \(a \), Oberflächenspannung \(\sigma \), Richtgröße \(k \), Bestrahlung \(H \), Belichtung \(H_{\mu} \), Ionendosisrate \(J^* \)
\[\frac{L}{t^2} = \frac{L}{t^2} \cdot \frac{i}{t} \ - \text{„Intensität der Beschleunigung“}: \text{Schallintensität } J, \text{ Bestrahlungsstärke } E, \text{ Beleuchtungsstärke } E_v, \text{ spezifische Ausstrahlung } M, \text{ spezifische Lichtausstrahlung } M_v, \text{ Strahlstärke } L, \text{ Leuchtdichte } L_v, \text{ Wärmestromdichte } \Lambda \]

\[\frac{L^2}{t} = L \cdot \frac{L}{t} \ - \text{IMPULS} \]

„Stauung der Bewegung“: mechanischer Impuls \(p \), kinematische Viskosität \(\nu \), elektrische Ladung \(Q \), elektrischer Fluß \(\Psi \), magnetische Polstärke \(p \), magnetischer Fluß \(\Phi \)

\[\frac{L^2}{t^2} = \frac{L^2}{t^2} \cdot \frac{i}{t} \ - \text{KRAFT} \]

„die Stauung zeigt Wirkung“: mechanische Kraft \(F \), Auftrieb \(A \), Gravitationskonstante \(g \), spezifische Schmelzwärme \(q \), spezifische Verdampfungswärme \(r \), Stromstärke \(I \), radioaktive Energiedosis \(D \), Äquivalentdosis \(D_q \)

\[\frac{t^2}{L^2} \ - \text{„Widerstand gegen Veränderung“: Wärmewiderstand } R \text{th} \]

\[\frac{L^2}{t^3} = \frac{L^2}{t^2} \cdot \frac{i}{t} \ - \text{„die Dichte der Kraft“}: \text{Leistungsmassendichte } p_m, \text{ radioaktive Energiedosisrate } D^* \]

\[\frac{L^3}{t} = L \cdot \frac{L^2}{t} \ - \text{WIRKUNG} \]

„Impuls einer Masse“: mechanische Stromstärke \(I \), Volumenstrom \(Q \), Drehimpuls \(L \), elektrisches Moment \(p \), magnetisches Moment \(m \), Planck-Konstante \(h \), radioaktive Gammastrahlenkonstante \(\Gamma \)

\[\frac{L^3}{t^2} = \frac{L^2}{t^2} \cdot L \ - \text{ENERGIE} \]

„Impulsänderung über eine Strecke“: Energie \(E \), Arbeit \(W \), Drehmoment \(M \), Winkelrichtgröße \(D \), Temperatur \(T \), Wärmemenge \(Q \), Enthalpie \(H \), Strahlungsergie \(Q \), Lichtmenge \(Q \)

\[\frac{t^2}{L^3} \ - \text{„Änderung der Energie“: thermischer Längenausdehnungskoeffizient } \alpha, \text{ thermischer Volumenausdehnungskoeffizient } \gamma \]

\[\frac{L^3}{t^2} = \frac{L^3}{t^2} \cdot \frac{i}{t} \ - \text{LEISTUNG} \]

„Energieverbrauch pro Zeiteinheit“: Leistung \(P \), Wärmestrom \(\Phi \), Strahlungsfuß \(\Phi \), Lichtstrom \(\Phi_v \), Strahlstärke \(I \), Lichtstärke \(I_v \)

In der obigen Aufstellung konnten durch die radikale Reduktion auf nur zwei „orgonometrische Dimensionen“ lauter funktionelle Identitäten konstatiert werden. Die orgonometrische Gleichheit etwa von Impuls \(p \) und Ladung \(Q \) weist, wie bereits in Kapitel I ausgeführt, auf ähnliche organotische Funktionen in beiden Größen hin. Auch sonst zeigt sich sofort der Vorteil, den Reichs Ansatz bringt. Man vergleiche etwa die intuitiv einleuchtende Beziehung zwischen Druck \(p \) und Dichte \(\rho \), Spannung \(U \) und Widerstand \(R \).

V. Das Wesen von Zeit und Raum

In Kapitel IV haben wir sämtliche physikalischen Größen auf die Zeit t und die Länge L zurückgeführt. Nun soll gezeigt werden, daß diese beiden Grundgrößen nicht die letzten Gegebenheiten sind, sondern sich hinter ihnen eine tiefere Ebene auftut, die mit Hilfe der Orgonometrie erschließbar ist.

V.1. Zeit und Länge

V.1.a. Der „Rote Faden“ Zeit

Die abstrakte Zeit können wir uns mit dem „Zollstock“ Abb. 14 vergebenwärtigen: die Gegenwart ist die „0“, von der aus man in die Vergangenheit zurückschauen („-1“, „-2“, etc.) bzw. in die Zukunft vorausblicken kann („1“, „2“, etc.). Es ist die Zeit, so wie wir sie uns etwa im Zusammenhang mit einem Raketenstart vorstellen: „….Vier, Drei, Zwei, Eins, Zündung, Eins, Zwei, Drei, Vier….“.

Dem Funktionalismus stellt sich die Wirklichkeit demnach nicht als eine „eindimensionale Linie“ dar, sondern als eine „zweidimensionale Entfaltung“: er „bedeutet“, Reich zufolge, „praktisch gesehen die simultane Tätigkeit von Gegensätzen, die in einem Gemeinsamen Funktionsprinzip wurzeln“ (Reich 1950d, S. 175).

Betrachten wir dazu Gl. 106:
In Gl. 106 symbolisiert das gestrichelte Rechteck die Gegenwart, d.h. das simultane Nebeneinander (Gleichzeitigkeit) von A1 und A2, der Teil links vom Rechteck die Vergangenheit dieser beiden Funktionen und der Teil rechts die mögliche Zukunft der Funktion A1. In Wirklichkeit gibt es also gar keine singulären Ereignisse (etwa „Zündung“) und damit keinen „Nullpunkt“, um den sich alles gruppert, sondern immer nur Nebeneinander (mit potentiell unendlich vielen Komponenten), die sich auseinander entwickeln (Nacheinander, Ungleichzeitigkeit).

V.1.b. Die Zeitmodi

Wie man sich das Verhältnis des „Jetzt“ zu den beiden anderen Zeitmodi vorstellen kann, läßt sich vielleicht im Rückbezug auf die klassische Philosophie Griechenlands und d.h. in der Auseinandersetzung mit Parmenides am besten plastisch vor Augen stellen. Man denke beispielsweise an Zenons Paradoxon vom Pfeil, mit dem wir uns bereits in Kapitel II beschäftigt haben und auf das wir weiter unten und in Kapitel VII zurückkommen werden: zum jeweiligen „jetzigen Zeitpunkt“ kann der fliegende Pfeil weder an einem Ort sein, denn dann bewegt er sich nicht, sondern gehört der Vergangenheit an, noch kann er nicht „verortet“ sein und damit der Zukunft angehören, d.h. noch gar nicht existieren.

Plato führten derartige Überlegungen dazu, die Gegenwart als „das Ganze der Gegensätze“ aufzufassen. In den Worten von Karl Jaspers:

Im Anschluß an die Überlegungen dieses Abschnitts können wir Gl. 106 wie folgt beschreiben:

\[
\begin{align*}
\text{Gegenwart} & \quad (\text{Expansion und Kontraktion}) \\
\text{Zukunft} & \quad (\text{Expansion}) \\
\text{Vergangenheit} & \quad (\text{Kontraktion})
\end{align*}
\]

Die rote Linie ist wieder, wie in Gl. 106, „der Rote Faden der Zeit“. Wenn man diesem „Roten Faden“ in Gl. 107 nachgeht, wird intuitiv deutlich, warum „Vergangenheit“ mit Kontraktion gleichgesetzt wird: folgt man der Zeitfolge „Vergangenheit \rightarrow Gegenwart \rightarrow Zukunft“ ist er zunächst hin zum CFP gerichtet („Kontraktion“), danach weg vom CFP („Expansion“).
In diesem Zusammenhang sei nochmals an unsere Erwähnung der „genealogischen“ Betrachtungsweise erinnert, denn sie ermöglicht eine noch einleuchtendere Illustration des hier diskutierten Sachverhalts:

![Diagramm](image)

In Abb. 29 beschreibt das nach rechts offene schwarze Dreieck die organometrische Entwicklung, während das nach links offene rote Dreieck die genealogische Entwicklung zeigt (Kontraktion). Sie widerspricht der allgemeinen organometrischen Entwicklung. Erst die Zukunft mit ihrem nach rechts offenen roten Dreieck harmoniert wieder mit der organometrischen Entwicklung.

Unser „Selbst“ ist nichts anderes als diese in einer Membran gefangene Orgonenergie. Entsprechend will uns Bergson lehren,

die Gegenwart niemals von der Vergangenheit zu isolieren, die sie hinter sich herzieht. Durch sie gewinnen alle Dinge eine Tiefe, noch mehr als Tiefe, etwas wie eine vierte Dimension, die es den früheren Wahrnehmungen
erlaubt, mit den gegenwärtigen solidarisch zu bleiben, und die es der unmittelbaren Zukunft möglich macht, sich schon teilweise in der Gegenwart abzuzeichnen. Die Wirklichkeit erscheint dann in der Art ihres Seins nicht mehr in einem statischen Zustande, sondern sie erhält sich in der Kontinuität und der Veränderlichkeit ihres Strebens dynamisch. Alles, was in unserer Wahrnehmung unbeweglich und wie vereist war, erwärmt sich und kommt in Bewegung. Alles beseelt sich um uns, und alles belebt sich in uns. (Bergson 1934, S.178f)

V.2. Bewegung

V.2.a. Das CFP von Zeit und Länge

Der grundsätzliche Unterschied zwischen den beiden Zeitmodi Vergangenheit (die wir mit Kontraktion gleichgesetzt haben) und Zukunft (Expansion) sowie die Sonderstellung des Zeitmodus Gegenwart (Kontraktion und Expansion) legt folgende Gleichung nahe:

\[\text{Zeit} \rightarrow (\text{Entfaltung des...}) \quad \text{Gl. 108} \]
\[\text{Bewegung} \quad \text{Länge} \rightarrow (\text{...Nebeneinander}) \]

Aus dieser Sicht sind Zeit und Länge einfache Variationen:
Ihr CFP ist uns bereits in einem anderen Zusammenhang begegnet: im unteren Teil von Gl. 52. Hier nach rechts hin erweitert:

![Diagram](image.png)

Gl. 110 legt im Rückblick auf Gl. 107 nahe, das CFP von Gl. 108 auch mit der Kreiselwelle und entsprechend die Zeit mit der Welle und den Raum mit dem Puls gleichzusetzen.\(^{34}\)

Mit der Entdeckung der Orgonenergie durch Reich finden diese philosophischen Spekulationen einerseits eine Bestätigung, andererseits ein Korrektiv, denn die „Kreisbewegungen“, an die Aristoteles in erster Linie dachte, waren die von Sonne, Mond, Planeten und Sternen. Während sie für den griechischen Philosophen noch „absolut“, „perfekt“ und „göttlicher Natur“ waren, sind sie für die nach-scholastische mechanistische Wissenschaft nichts weiter als der im Grunde bedeutungslose mechanische Kompromiß zwischen Bewegungsenergie und Gravitation (potentielle Energie). Reich hat die mechano-mystischen Denkmuster durchbrochen und gezeigt, daß die besagten Bewegungen Ausdruck der kosmischen Überlagerung sind, die bewirkt, daß die Himmelsobjekte KRWs beschreiben (Reich 1951a).

\(^{34}\) Hier und im folgenden werden jene Funktionen „wieder“ verbunden, die Charles Konia in Gl. 52 getrennt hat. Er insistiert, daß etwa Expansion nicht das gleiche ist wie die Wellenfunktion W und daß deren Vermischung das Instrument der Orgonometrie stumpf macht. Man denke in diesem Zusammenhang etwa an meine Erläuterungen zu Abb. 2. Diesen Vorbehalt Konias sollte man bei den folgenden Ausführungen stets im Auge behalten.
V.2.b. Orgonotische Bewegung und mechanische Bewegung

Die mechanistischen Gesetze konnten erst erschlossen werden, nachdem man die Zeit als eine abstrakte, „absolute“ von Bewegung unabhängige Größe behandelte, die sozusagen Teil der „Bühne“ ist, auf der sich die Bewegung abspielt. In welchem Sinne die beiden Grundgrößen Länge und Zeit mit Bewegung verknüpft sind, sieht man daran, wie sich die KRW beim Zollstock und bei Uhren, d.h. den „Meßinstrumenten“ für Länge und Zeit, unmittelbar einschreibt:

Abb. 30

Sowohl Längen- als auch Zeitmessungen sind ein Periodenvergleich, d.h. beruhen letztendlich auf der KRW. Es sei in diesem Zusammenhang auf Kapitel III verwiesen, wo die „abstrakte Kreiselwelle“, die das Dezimalsystem auf Zollstücke und das Sexagesimalsystem auf Digitaluhren schreibt, thematisiert wurde (vgl. Abb. 17). Eindeutiger wird das natürlich bei mechanischen Uhren (gar bei Pendeluhren!) mit ihrer Einheit von „gradlinig“ verlaufender Zeit und kreisförmig sich bewegenden Zeigern.

Angesichts meiner Umgebung im Wald, d.h. angesichts naturgegebener „Maßstäbe“, kann es auch nicht anders sein: alles um mich herum und alles in mir ist von der kosmischen Überlagerung, der KRW und der orgonotischen Pulsation geprägt.

Eine funktionelle Gleichsetzung von Zeit und Welle bzw. Länge und Puls können wir aus den Ausführungen in Kapitel IV.1.e., ableiten, ist doch das Pendel eine direkte Ausdrucksform der Wellen-Funktion der KRW (vgl. Gl. 93), während der freie Fall auf das jeweilige Zentrum der Gravitation, d.h. „nach unten“, gerichtet ist und damit der Puls-Funktion p entspricht. Wenn wir also in Kapitel IV sämtliche physikalischen Grundgrößen auf t (Zeit) und L (Länge) reduziert haben, ist dies auf einer tieferen Funktionsebene gleichbedeutend mit der Rückführung auf die beiden Grundbestandteile der orgonotischen Bewegung: dem nach vorne gerichteten „Schwung“ und dem „Puls“.

Damit haben wir zwei Ebenen vor uns, die primordiale und die mechanische:

\[p \quad \text{Gl. 111} \]

www.orgonomie.net
v steht für Geschwindigkeit (vgl. Kapitel IV).

Die auf den ersten Blick absurde Vorstellung, die Zeit mit der kontinuierlichen Wellenfunktion \(W \) und den Raum mit der diskontinuierlichen Pulsfunktion \(p \) gleichzusetzen, wird anhand des bereits erwähnten zweiten Paradoxons Zenons vielleicht verständlicher. Zenon sagt, daß der Pfeil sich nicht bewegen kann, weil er in jedem denkbaren Augenblick an einem bestimmten Ort verharrt. Dabei setzt er irriterweise das Nacheinander der Zeit (Welle) mit dem Nebeneinander des Raumes (Pulse) gleich. Oder anders ausgedrückt: Bewegung ist nur denkbar, wenn man gemäß Gl. 111 Zeit und Raum so voneinander trennt wie Welle und Puls.\(^{35}\) Auf diese Weise steckt hinter jeder Bewegung (Gl. 112), und damit hinter jeder anderen physikalischen Größe (vgl. Kapitel IV), die KRW.

Für Meyerowitz ist das CFP von Zeit und Länge nicht einfach „Bewegung“, sondern, „relative Bewegung“ (Meyerowitz 1994).\(^{36}\) Nehmen wir einen Beobachter, den wir mit

\(^{36}\) Dem schließt sich Konia in der Originalversion von Gl. 52 an: „relative Bewegung“ als CFP von Kreiselwelle und Pulsation.

Zur Illustration der Beziehung der jeweiligen CFPs von Gl. 112 und Gl. 111 („relative Bewegung“ und „KRW“) vergebenswärterigen wir uns ein Windhundrennen. Man kann den Hund rein mechanisch wie einen Rennwagen behandeln: die Punkte L_1 und L_2 passiert er zu den Zeitpunkten t_1 und t_2 und hat deshalb die Geschwindigkeit $v = L_2 - L_1 / t_2 - t_1$. In seiner Bewegung („gestreckt → gebeugt → gestreckt → gebeugt, etc.“) finden sich aber auch die KRW mit ihren beiden Komponenten Welle („gestreckt“) und Puls („gebeugt“) bzw. Expansion („gestreckt“) und Kontraktion („gebeugt“). Gleichzeitig kann man prinzipiell auch die orgonotische Bewegung (KRW und Pulsation) in Begriffen von Zeit und Länge beschreiben. Entscheidend ist jedoch, daß ebenso umgekehrt, wie anhand von Abb. 30 gezeigt, Zeit und Länge als Ausdruck von KRW und Pulsation betrachtet werden können.

Orgonotische Bewegung (Gl. 111) und mechanische Bewegung (Gl. 112) bilden einen einfachen Gegensatz, d.h. es besteht die Tendenz, daß die eine Funktion die andere nach sich zieht. Etwa in dem Sinne, daß, wenn wir „mechanisch lächeln“, sich das entsprechende Gefühl hinzugesellt.

orgonotische Bewegung (KRW, Pulsation) mechanische Bewegung

V.2.c. Jenseits der Bewegung

Die Liebe kann buchstäblich „stärker als der Tod“ sein, weil sie die Grenzen von Zeit und Raum durchbricht.37

Während die beiden Arten der Bewegung selbstständend homogene Funktionen sind (vgl. Gl. 113), muß es sich bei Bewegung und Nichtlokalität (ebensfalls selbstständend) um heterogene Funktionen handeln. Bewegung kann in Nichtlokalität übergehen und umgekehrt (Gl. 65 und Gl. 66).

Damit verändert sich aber auch die Beziehung von Zeit und Länge, die, wie bereits angedeutet, „an sich“ unwandelbar rigide sein muß, damit so etwas wie „Fahrpläne“ (der Abgleich von Zeiten und Distanzen) überhaupt möglich sind. Oder anders

37 In diesem Sinne ist Religion nichts anderes als eine sexuelle Perversion.
ausgedrückt: die in Kapitel IV präsentierten Größen überhaupt sinnvoll formuliert werden können. Kommt jedoch die geisterhafte Nichtlokalität ins Spiel, kann aus Zeit Länge werden und umgekehrt:

\[
\begin{align*}
\text{Zeit} & \xrightarrow{\text{Gl. 115}} \text{Länge} \\
\text{Länge} & \xrightarrow{\text{Gl. 116}} \text{Zeit}
\end{align*}
\]

Der Übergang von Zeit in Länge (Gl. 115) bedeutet Aufhebung der zeitlichen Trennung. Man denke beispielsweise an das Gedächtnis. Entsprechend heißt Übergang von Länge in Zeit (Gl. 116) Aufhebung der räumlichen Trennung. Beispiele sind Phänomene wie „Synchronizität“ oder die Gravitation („Fernwirkung“). 38

Mit Gl. 115 und Gl. 116 ist schließlich auch noch eine weitere Rechtfertigung für die in Zusammenhang mit Gl. 107 vorgenommene Gleichsetzung von Zeit und Zukunft bzw. Länge und Vergangenheit gegeben.

Wir können Gl. 115 mit der folgenden provisorischen Gleichung parallel setzen:

\[
\begin{align*}
\text{Zukunft} & \xrightarrow{\text{Gl. 117}} \text{Vergangenheit}
\end{align*}
\]

Zeit verwandelt sich in Länge (G. 115), wenn die Vergangenheit eine Rolle spielt (Gl. 117), d.h. bei der Genetik, beim Immunsystem, etc. (vgl. Harman 2004, S. 39).

Das entsprechende gilt für Gl. 118:

38 Siehe dazu die entsprechenden Ausführungen in **Ea und die Wellenfunktion** (www.orgonomie.net/hdodorea.htm), die erst vor dem Hintergrund dieser orgonometrischen Ausführungen verständlich werden.
Länge verwandelt sich in Zeit (Gl. 116), wenn die Zukunft eine Rolle spielt (Gl. 118), d.h. bei der „Integration“. Man denke beispielsweise an eine Spiralgalaxie, bei der die beiden sich überlagernden Ströme voneinander wissen müssen, auch wenn die betreffenden Gebiete Abertausende Lichtjahre (= „Informationsjahre“) auseinander liegen (vgl. Harman 2004, S. 39). Wenn ich weiß, was jetzt auf der Sonne geschieht, obwohl das Licht (und damit die Information über dieses Ereignis) acht Minuten bis zur Erde benötigt, schaue ich praktisch in die Zukunft!

V.3. Die Struktur von Zeit und Raum

V.3.a. Die „Psychosomatik“ von Zeit und Länge

Von der Vorgehensweise in den vorangegangenen vier Kapiteln her ist es naheliegend, Gl. 108 mit unserer Grundgleichung Gl. 20 gleichzusetzen, zumal sich diese Betrachtungsweise ansatzweise auch in der Evolutionsbiologie findet, wie sie etwa Hans Hass im Rahmen seiner Energontheorie vertritt (vgl. Hans Hass und der energetische Funktionalismus www.orgonomie.net/hdomath.htm). Da wäre beispielsweise das Problem der Bindung der Teile (Zellen, Organe, etc.) an das Ganze (das energetische Gefüge, das „Energon“):

zeitlich
(= Koordination)

räumlich

Zur Koordination gehören aktive Funktionen wie die Verknüpfung von Bewegungsvorgängen, zum räumlichen Gegenpart körperliche Strukturen, die für den materiellen Zusammenhalt sorgen. Man denke an die DNA, das zentrale Nervensystem, die Straßenverkehrsordnung (zeitliche Koordination) auf der einen Seite und das Bindegewebe, die Haut, die Straßenbegrenzung (räumliche Bindung) auf der anderen Seite (Hass 1987, S. 15f). Dabei ist offensichtlich, daß zeitliche Vorgänge sich weit einfacher gegenseitig durchdringen können als räumliche (materielle) Gebilde, die ersteren also im weitesten Sinne „geistiger“ Natur sind.
Hass betrachtet den Organismus als ein Gefüge, das weder allein von seinem Verhalten noch allein von seiner Gestalt her angemessen betrachtet werden kann, sondern nur von seiner Gesamtleistung, die sich aus dem Zusammenspiel von Verhalten („Zeit“) und Gestalt („Raum“) ergibt:

Abstrakt betrachtet folgt biologisches Verhalten einer Zeitstruktur, während die Organe eine Raumstruktur haben. Reich sprach von Charakterpanzer (stereotypes Verhalten, die „Psyche“) und Muskelpanzer („Soma“) (Reich 1949b).

Die ungreifbare Zeit verhält sich wie das Subjekt, das sich ewig dem „objektiven“ Zugriff entzieht, während der Raum einen greifbaren Objektcharakter besitzt. Man kann zwar Raumabstände untereinander und mit einem „Umeter“ vergleichen, aber Zeit läßt sich auf diese Weise nicht „einfrieren“ und beliebig „verschieben“. Das rückt sie in die Nähe „innerpsychischer“ Phänomene: genausowenig wie man Zeitabschnitte „nebeneinander legen“ und vergleichen kann, kann man aufeinanderfolgende psychische Zustände miteinander vergleichen, d.h. „nebeneinander legen“. In dieser Hinsicht kann sich die Gleichsetzung von Gl. 108 mit unserer Grundgleichung Gl. 20 auch auf die Philosophiegeschichte stützen. Beispielsweise führt der berühmte Wissenschaftstheoretiker Hans Reichenbach aus,

Anschauliches bezieht, es also Sinn macht, alles Räumliche und Körperliche unter den Begriff „Geometrie“ zu subsumieren.

Der Geometrie fehlt im Gegensatz zur Arithmetik, die um die Grundzahl 1 (= Ganzheit) kreist, ein Grundmaß. Sie steht für ein beliebig teilbares Kontinuum. Das geometrische Kontinuum wird erst durch die Einführung eines mehr oder weniger willkürlichen Grundmaßes wie des Zentimeters „berechenbar“: die Zahlen finden dadurch sozusagen einen Angriffspunkt. Umgekehrt zwingt die Geometrie der Arithmetik die rationalen und irrationalen Zahlen auf (wie $\frac{1}{2}$ und π). Wie in Kapitel IV gezeigt, können aber nur in einer leeren Welt Zeit und Länge beliebig unterteilt werden. In einem von der Orgonenergie erfüllten Universum gibt es so etwas wie natürliche Einheiten, bzw. „Ganzheiten“, „charakteristische Momente“, d.h. neben unendlich teilbarer Quantität auch ganzheitliche Qualität. Auf diese Weise werden über den Umweg der Mathematik und der Grundgleichung Gl. 20 Zeit und Länge zu etwas Greifbarem (vgl. Gl. 86):

Das Abzählen....

physikalische Größe

.....der Grundeinheit

(z.B. cm)

Die Arithmetik, also in erster Linie die Abfolge der natürlichen Zahlen, verknüpft die Elemente des Raumes miteinander, d.h. eine Zahl zieht die andere nach sich.

Dieses Konzept wird vielleicht einleuchtender, wenn wir uns betrachten, wie Bergson mit Zenons Paradoxon umgeht, daß Achilles niemals die Schildkröte einholen kann, denn wenn er den Punkt erreicht hat, an dem sich die Schildkröte gerade befand, ist diese selbst schon wieder weiter. Bergson wendet dagegen ein, daß das Abzählbare an der Bewegung, die Zeit, eben nicht beliebig teilbar ist und Zenon nicht die Zeit des Achilles mit der Zeit der Schildkröte vergleicht, sondern stattdessen Zeit (Ganzheit) mit beliebig teilbarem Raum. In seiner Argumentation versetzt sich Bergson in Achilles’ Situation:

www.orgonomie.net
Raum. Es hieße glauben, daß der Übergang mit der durchlaufenen Bahn identisch wäre. Es hieße, Bewegung und Unbeweglichkeit miteinander koinzidieren lassen und sie infolgedessen miteinander verwechseln. (Bergson 1934, S. 164f)

Kann man die Psyche wirklich mit der Zeit gleichsetzen, scheint doch dem Geist nichts fremder und unbegreiflicher zu sein als eben das Phänomen Zeit? Es sei nur an Augustinus’ berühmten Ausspruch erinnert, der zu recht in keiner Auseinandersetzung mit der Zeit fehlt! Umgekehrt: was soll das sein, Psyche oder „Geist“?

Vielleicht hilft es weiter, wenn wir im Körper nach einer Funktion suchen, die einerseits mit der „Psyche“ verbunden ist und andererseits der Welle (im Gegensatz zum Puls) in Gl. 111 entspricht. Hier bieten sich das „hirnzentrierte“ energetische Orgonom (Zeit, die Wellenbewegung der KRW) und das „bauchzentrierte“ organotische System (Länge, die Pulsation der KRW) an. Ihnen entsprechen die beiden heterogenen Funktionen Sensation und Emotion, die, wie bereits in Zusammenhang mit Gl. 62 und Gl. 63 ausgeführt wurde, ineinander überführbar sind.

V.3.b. Die Dauer

„Dichterphilosophen“ wie Nietzsche („ewige Wiederkehr“) und Bergson („Dauer“) haben einen Bereich erahnt, „das Sein“, der jenseits von Zeit, Raum und Materie angesiedelt zu sein scheint. Ihre Intuition wird durch unsere oben modifizierte Grundgleichung (vgl. Gl. 20, Gl. 119 und Gl. 120) zugänglich, anhand derer wir gesehen haben, daß in der Orgonomie die Trennung in Psyche und Soma, Geist und Materie nur bedingt Sinn macht. Es sei an Gl. 50, Gl. 51 und Gl. 52 sowie Gl. 71 erinnert.

starrer Maßstab, vergleichbar einer CD, bei der alle Teile eines „fließenden“ Musikstücks beliebig greifbar werden („Gedächtnis“).

\[
\text{fließende Zeit (Erwartung)}\]

\[
\text{mechanische Zeit (Erinnerung)}\]

V.3.c. Die Tiefe

Hier wird komplementär zur Dauer im zeitlichen Bereich „die Tiefe“ im räumlichen Bereich evident. Diese erschließt sich ähnlich der Dauer, indem wir die abstrakte Quantität qualitativ greifbarer machen, d.h. in diesem Fall die eindimensionale Länge auf den dreidimensionalen Raum ausweiten.

Aus abstrakter, mathematischer Sicht spannt eine binäre Alternative einen zweidimensionalen Raum auf. Durch das CFP „Tiefe“ wird eine zusätzliche Ebene erschlossen.
Das CPF „Tiefe“ wird im Rückgriff auf den oben Gl. 53 und Gl. 54 dargelegten Gegensatz von „vertikalem“ Orgonom (Sensation) und „horizontalem“ orgonotischen System (Emotion) faßbar. Die CPF in Gl. 124 verweist demnach auf den undifferenzierten Orgonenergie-Ozean, aus dem sowohl unsere physische als auch unsere psychische Struktur hervorgegangen sind (vgl. Gl. 50).

Gl. 123 ist die funktionelle Entsprechung von Gl. 107. Und genauso wie wir „Gegenwart“ als CFP nur richtig würdigen können, wenn wir sie mit der „Dauer“ in Beziehung setzen, bedarf auch die „Tiefe“ in Gl. 124 eines qualitativen Korrelats, wie es in Gl. 125 präsentiert wird. Diese „qualitative Tiefe“ umreißt Reich wie folgt:

39 Eine psychologische Untersuchung an der Staatsuniversität von North Dakota hat gezeigt, daß dominante (d.h. buchstäblich „erstrahlende“) Menschen gegenüber zurückhaltenden einen Vorteil in der Wahrnehmung von oben und unten besitzen (Moeller 2008).

www.orgonomie.net
(...) du kannst nichts daran ändern, daß du ein Teil des Ozeans bist, der aus
dessen Tiefen heraustrat und in dessen Ruhe zurückkehren wird. Und indem
du aus dem Ozean hervorgehst und zu ihm zurückkehrst, trägst du seine Tiefe
mit dir. Das ist nicht nur ein bißchen Tiefe verglichen mit der großen Tiefe des
Ozeans, nicht ein Milligramm Tiefe verglichen mit Tausenden Tonnen von
Tiefe. Tiefe ist Tiefe, egal, ob in einem Gramm oder einer Tonne. Sie ist Qualität,
keine Quantität. Sie wirkt in einem Glühwürmchen ebenso
uneingeschränkt wie in einem Elefanten. (Reich 1953a, S. 168f)

Es sei in diesem Zusammenhang auch an Nietzsches Gebrauch des Begriffs „Tiefe“
in seinem zentralen „Gedicht“ über die ewige Wiederkehr erinnert: jeder Augenblick
hat eine unendliche Tiefe, weil er sich unendlich oft ereignet hat und unendlich oft
wiederkehren wird (Nietzsche 1885). Da jedoch alles mit allem „verschärft“ ist,
gewinnt damit jedes noch so marginale Ereignis ein unendliches Gewicht. Verändert
sich die Lage eines Sandkorns auf einem Mond des Saturn, verändert sich das
gesamte Universum (vgl. Der verdrängte Nietzsche www.orgonomie.net/hdomath.htm).
Hierbei geht es natürlich nicht um „Physik“, sondern um poetisches Erahnen der Substanz der Welt.

Die beiden Varianten in Gl. 125 erschließen sich, wenn man bedenkt, daß die
kosmische Energie in zwiefacher Hinsicht „bi-polar“ ist. Der Raum ist kein „leerer
Raum“, sondern von einer „Substanz“ erfüllt, die fließt und die wie ein Lebewesen
pulsier.

\[
\begin{align*}
\text{links} & \quad \rightarrow \quad \text{rechts} \\
\text{Expansion} & \quad \leftrightarrow \quad \text{Kontraktion}
\end{align*}
\]

Gl. 126 Gl. 127

Das Fließen der Orgonenergie bedingt, daß ihr so etwas wie ein „Richtungssinn“
eigen ist, ein, wenn man so sagen kann, „Backbord“ (links) und ein „Steuerbord“
(rechts). Diese einfache Variation Gl. 126 zeigt sich bei allen höheren Lebewesen im
grundlegenden Unterschied zwischen der linken und rechten Körperseite, der auf
das Orgonom zurückgeht (vgl. Biologische Entwicklung aus orgonomischer Sicht
www.orgonomie.net/hdogenetik.htm).

Wenn man Gl. 125 mit Gl. 124 vergleicht, scheint es auf den ersten Blick zwar
widersinnig, daß „oben und unten“ (Höhe) ausgerechnet mit „links und rechts“
(fließender Orgonenergie-Ozean) in einen funktionellen Zusammenhang gebracht
wird, jedoch treten „oben und unten“ funktionell immer in Zusammenhang mit
Kreisbewegungen in Erscheinung. Man denke etwa an den Planeten Erde, der als
Ganzes einzig aufgrund seiner Rotation ein „oben und unten“ besitzt (Nord- und
Südpol), denn mit Kreisbewegung wird gleichzeitig der Schraubensinn und damit
„links und rechts“ evident.
Der in Gl. 127 beschriebene alternierende Gegensatz von Expansion und Kontraktion (Pulsation), zeigt sich beispielsweise in den beiden Grundemotionen Lust (Expansion) und Angst (Kontraktion). Er ist in den primitiven Lebewesen Struktur geworden, die sich in den höheren Lebewesen in Gestalt des Autonomen Nervensystems bewahrt hat.

An dieser Stelle kann nur auf Siegfried Wachtel und sein Buch Das Linksphänomen (Wachtel, Jendrusch 1990) verwiesen werden. Ein in der DDR aufgewachsener Arzt (Jahrgang 1930), fiel ihm in seiner Jugend auf, daß Skifahrer Hindernissen bevorzugt nach links ausweichen. Im Anschluß daran entdeckte er, daß dieser „Linksdrall“ universell ist, d.h. das gesamte Naturgeschehen durchdringt. Es ist in der Natur also nicht gleich, in „welche Richtung es geht“: es gibt grundlegende qualitative Unterschiede, was die beiden Richtungen des Raumes oder, genauer gesagt, den Schraubensinn betrifft.

Nicht zuletzt sei daran erinnert, daß praktisch alle lebensenergetischen Konzepte, die eine Entsprechung zur Orgonenergie darstellen, eine „linke“ und „rechte“ Seite haben. Man denke nicht nur an das Yin und Yang bei den Chinesen, sondern auch an die od-negative Atonizität und od-positive Zoozität (Reichenbach und Ziegler), links- und rechtsdrehendes Elktroid (Rychnowski), N- und N1-Strahlung (Blondlot) (Jörgenson 1990).

Bergson weist in Zeit und Freiheit auf die außerordentlichen Fähigkeiten von Tieren hin, sich im Raum zurechtzufinden (man denke etwa an die Zugvögel). Er schließt aus dieser Fähigkeit darauf, daß diesen Tieren die Richtungen des Raumes vielleicht als unterschiedliche Qualitäten erscheinen.

Die Möglichkeit einer derartigen Wahrnehmung wird begreiflich, wenn man bedenkt, daß wir selbst unsere rechte von unserer linken Seite vermittels eines natürlichen Gefühls unterscheiden und daß die beiden Bestimmungen unserer eigenen Ausgedehntheit uns also wohl eine Qualitätsschied darbieten; eben deshalb scheitern wir daran, sie zu definieren. In der Tat sind die qualitativen Unterschiede überall in der Natur vorhanden; und es ist nicht einzusehen, weshalb zwei konkrete Richtungen in der unmittelbaren Nähe der Quelle nicht sinnvoll sind.

Das hat nichts mit dem Unterschied zwischen OR und DOR zu tun. Das Qigong kennt das Qi („Atem“), das sich aus zwei „Atemzügen“, dem weißen Yin und dem blauen Yang zusammensetzt. Neben diesem Qi, das der Orgonenergie gleichzusetzen ist, gibt es eine giftige Form des Qi, nämlich den „schlechten Atem“, das „schwarze“ Sha, das als bewegungsloses, stagniertes Qi dem DOR entspricht.

www.orgonomie.net
Apperzeption nicht ebenso markiert sein sollten wie zwei Farben. Die Konzeption von einem leeren und homogenen Medium aber ist weit auffallender und scheint eine Art Reaktion gegen jene Heterogenität vorauszusetzen, die unserer Erfahrung zutiefst zugrunde liegt. Man sollte daher nicht bloß sagen, daß gewisse Tiere einen speziellen Richtungssinn besitzen, sondern außerdem und insbesondere, daß wir Menschen die spezielle Fähigkeit haben, einen qualitätslosen Raum zu perzipieren oder zu denken (Bergson 1889, S. 75f).
VI. Die Überwindung der Mechanik

Das Hamiltonsche Prinzip und die Newtonsche Gesetze umreißen die Grundlagen der Mechanik. Das Hamiltonsche Prinzip geht auf die Überlagerungsfunktion zurück, die wegen der nichtlokalen Natur der Orgonenergie auch in Zusammenhängen zum tragen kommt, die auf den ersten Blick nichts mit Überlagerung zu tun haben. Die zentrale physikalische Größe „Kraft“, deren Funktionsweise von den Newtonschen Gesetzen beschrieben wird, ist die mechanische Entsprechung der orgonotischen Strömungen, die in der organismischen Pulsation wechselweise nach außen (Expansion) und nach innen (Kontraktion) gerichtet sind.

VI.1. Die Überwindung des Hamiltonschen Prinzips

VI.1.a. Vom orgonomischen Potential zum mechanischen Potential

Nachdem wir aus dem „natürlichen Animismus“ herausgewachsen sind, werden wir in dieser Welt erst dann wieder heimisch werden, wenn wir den höheren (engeren) Funktionsbereich aus dem tieferen (umfassenderen) ableiten:
Bewegung der
kosmischen
Orgonenergie

kleinste Wirkung

Nichtlokalität

actio = reactio

„lokale“ Ströme

Gl. 128

Gl. 128 wird im folgenden entwickelt und auf diese Weise der antagonistische
Gegensatz

das Lebendige ↔ das Mechanische

Gl. 129

in einen einfachen Gegensatz

das Lebendige →← das Mechanische

Gl. 130

umgewandelt. Die Mechanik wird in übergreifende Funktionszusammenhänge
eingeordnet und ganz zu unserem Werkzeug gemacht. 42

Das „lebensfremde“, wenn nicht sogar lebensfeindliche Wesen der Mechanik wird
anhand des „Prinzips der kleinsten Wirkung“ deutlich, das nach dem Physiker
Hamilton benannt wurde (Linhard 2002). Ein Stein fällt gerade zu Boden, weil er auf
ejeder anderen Bahn sich schneller bewegen müßte und dergestalt eine größere
Wirkung zeitigen würde. Zwar erreichen ein gradlinig nach unten fallender und ein
horizontal nach vorne geworfer Körper gleichzeitig den Erdboden, aber eben
deshalb hat der geworfene Körper, der eine längere Strecke zurücklegt und sich
deshalb schneller bewegen muß, eine größere Wirkung, wenn er auf den Boden
auftrifft.

Zur Vergegenwärtigung des Hamiltonschen Prinzips vergleiche man einen Ball, der
frei von einem Felsvorsprung fällt mit einem, der auf der anderen Seite den Berg
hinabrollt. Oder man nehme einen Hebel, dessen Hebelarme identisch mit den
beiden von Materie unabhängigen Kraftarmen sind und vergleiche ihn mit einem
„Winkelhebel“ bzw. beliebig geformten Hebel:

42 Aus einer anderen Perspektive wurde dieses Thema bereits in Hans Hass und der
energetische Funktionalismus (www.orgonomie.net/hdomath.htm) abgehandelt.
Bei der linken Figur Abb. 31 ist es, jedenfalls von der Energiebilanz her betrachtet, vollkommen gleichgültig, wie der Ball den Berg herunterrollt. Es zählt einzig die Länge der „immateriellen“ durchgezogenen Linie des freien Falls, – auch wenn Bergsteiger das natürlich anders sehen. Desgleichen ist es vollkommen gleichgültig, wie bizarr die durch Punktlinien beschriebene Hebelwaage (rechte Figur Abb. 31) auch immer geformt sein mag: einzig die „immateriellen“ durchgezogenen Linien geben an, welche Gewichte links und rechts an die Waage gehängt werden müssen.

Das in Abb. 31 illustrierte Prinzip beinhaltet imgrunde den gesamten Schatz der mechanistischen Naturgesetze: eine Kugel rollt immer den steilsten Weg hinunter, ein Lichtstrahl wählt immer den kürzesten Weg durch ein Medium, Atomhüllen streben immer nach dem energetisch niedrigsten Zustand, die Planeten haben „stationäre“ Bahnen, Temperaturunterschiede gleichen sich aus, etc. – so lassen sich die Gesetze von Mechanik, Optik, Quantenmechanik, Himmelsmechanik, Thermodynamik, etc. auf den Zwang zur kleinmöglichen Wirkung zurückführen. Es ist das Prinzip des „kleinsten Widerstandes“ bzw. des „kürzest möglichen Weges“. Dieser Weg wird auf der Grundlage von Nichtlokalität zwischen all den denkbaren Wegen ausgewählt. Die organ-energetischen Grundlagen des Hamiltonschen Prinzips hat Reich in Die kosmische Überlagerung am Beispiel des freien Falls exemplifiziert: durch die Funktion der Überlagerung verwandeln sich die lokalen organotischen Strömungen in die nicht-lokale Funktion „Gravitation“ (Reich 1951a).

Im Gravitationsfeld wird alles „schnellstmöglich“ auf den niedrigsten energetischen Zustand reduziert und es bedarf hoher Organenergie-Ladungen, um sich gegen diesen nivellierenden Trend der Gravitation zu wehren. Man denke beispielsweise an das langsame Wachstum der Pflanzen, die sich gegen den Sog der Gravitation
wehren, bis sie, etwa nach einem Axthieb, von einem Augenblick zum anderen umfallen. Das organomische Potential entspricht den von der Mechanik größtenteils ignorierten langsamnen „Umwegen“, die insbesondere das Lebendige nimmt. Es ist, als würden die Organismen auf diesem Planeten das Hamiltonsche Prinzip beständig verhöhen.\footnote{Im 2. Abschnitt werden wir sehen, daß sie auch die Newtonschen Gesetze verhöhen.} Diese Umwege entsprechen den „lokalen“ organotischen Strömungen.

Einen Überblick bietet die folgende Entwicklungsgleichung:

\[
\text{kosmischer Organonenergie-Metabolismus} \quad \begin{array}{c}
\text{mechanisches Potential} \\
\text{orgonomisches Potential}
\end{array} \quad \begin{array}{c}
\text{schnelle Entladung} \\
\text{der wahrscheinlichste Pfad}
\end{array} \quad \begin{array}{c}
\text{langsamer Aufladung} \\
\text{„unwahrscheinliche Pfade”}
\end{array}
\]

\text{Gl. 131}

\section*{VI.1.b. Vom mechanischen Potential zum orgonomischen Potential}

Nicht anders sieht es bei einer sozusagen „runden Kiste“ aus: wenn ein Rad rollt, befindet sich die Achse des Rades in jedem gegebenen Augenblick auf einer Kreisbahn um den Berührpunkt.

Um die Hebelgesetz mit Hilfe der KRW erklären zu können, betrachten wir zunächst ein spezielles Rad, das „Wellrad“, das sich aus zwei Rädern zusammensetzt:
Beim Wellrad ist ein großes Rad starr mit einem kleinen Rad (das leider die, was unseren Zusammenhang betrifft, irreführende Bezeichnung „Welle“ trägt) so verbunden, daß sich beide die gleiche Achse teilen. Das Wellrad ist eine Art Flaschenzug: das Weniger an Kraftaufwand wird mit einem Mehr an Weg erkauft. Je kleiner das innere Rad im Vergleich zum äußeren ist, desto stärker ist die „Hebelwirkung“. 45

$$\xi \rightarrow \int p \cdot W$$
Gl. 132

Auf dem funktionellen Gegensatz von p (kleiner Kraftarm) und W (großer Kraftarm) beruht der Antrieb eines Fahrrades, Windrads, jedes Hebels, jeder Kneifzange – im Grundre unsere gesamte Technik:

45 Das erinnert an die Pulsation mit ihrer Abfolge von Kontraktion („kleiner Kreis“) und Expansion („großer Kreis“). Ähnlich wie eine minimale Bewegung des kleinen Kraftarms, eine große des großen Kraftarms erzeugt, ist die Kontraktion des organotischen Systems Voraussetzung für seine Expansion. Man denke beispielsweise an den Sprung eines Tigers, der sich wie eine Feder zunächst zusammenzieht, um sich dann um so besser strecken zu können.

www.orgonomie.net
Bei dem in Abb. 34 skizzierten zweiseitigen Hebel zeichnen um den Drehpunkt die beiden Angriffs punkte der Kräfte einen kleineren und einen größeren Kreis, d.h. ein „virtuelles Wellrad“ und damit die KRW. Ein einzelner Mensch kann mit Hilfe einer Hebestange („Hebel“) tonnenschwere Felsbrocken in Bewegung setzen, da der Lastarm und der Kraftarm den Radien der beiden Kreise entsprechen, die die KRW zeichnen! Konkret äußert sich das so, daß die Ersparnis an Kraft („p“) durch ein Mehr an Weg („W“) erkauf wird. Je nach Verhältnis der beiden Kraftarme („Drehmoment“) legt der Punkt rechts, den wir nach unten drücken, eine längere Wegstrecke zurück, als der Punkt links, der am Felsen angreift, nach oben („Arbeit“).

Hier kann man natürlich einwenden, daß zwar die Hebelarme, aber keineswegs die alles entscheidenden Kraftarme ein Wellrad zeichnen, denn schließlich haben die Kraftarme eine Länge von gleich Null, wenn der Hebel senkrecht steht (vergleiche Abb. 31 links). Doch statt die funktionelle Gleichsetzung von Hebel und KRW infrage zu stellen, untermauert dieser „Widerspruch“ sie nur noch mehr, denn hier wird die Pulsation evident, die mit der KRW untrennbar verbunden ist und die sich

46 Bei einem einseitigen Hebel wären sich die beiden „Räder“ in die entgegengesetzte Richtung drehen.
47 Wie Kraft F und Puls p miteinander zusammenhängen, wird weiter unten deutlich.
beispielsweise bei den kreiselwellenartigen Planetenbewegungen im Wechsel von Aphel (Expansion) und Perihel (Kontraktion) äußert. Siehe dazu Gl. 59.

Was für den Hebel gilt, gilt auch für die „schiefe Ebene“, die auf den ersten Blick nun wirklich nichts mit dem Wellrad verbindet. Man braucht etwa beim Umzug ein besonders schweres Möbelstück nicht mit einem ungeheuren Kraftaufwand auf den Möbeltransporter hochwuchten, sondern nur die schief Ebene hochschieben, wobei hier ebenfalls das Weniger an Kraft durch ein Mehr an Weglänge erkauft wird. (Erinnert sei auch an den Berg in Abb. 31.) Eine Schraube ist nichts anderes als eine „gedrehte schiefe Ebene“. Flugzeugpropeller und Schiffsschrauben sind „Schrauben ohne Ende“, – womit wir wieder bei der KRW wären.

Der funktionelle Gegensatz von Kraft (F) und Weg (L) muß funktionell identisch sein mit dem von Puls p und Welle W:

\[
\begin{align*}
p \cdot W & \quad \Rightarrow \quad F \cdot L, \\
\text{Gl. 133}
\end{align*}
\]

Indem wir (entsprechend dem langen Kraftarm) „den langen Weg gehen“ verwandeln wir mechanisches Potential in ergonomisches Potential.

Betrachten wir dazu zunächst zwei Balken, die mit Drehachsen versehen um 360° frei drehbar sind. Der erste ist gepunktet gezeichnet, der zweite mit durchgezogenen Linien:

Abb. 35

\[
\text{stabil} \quad \text{labil} \quad \text{indifferent}
\]

www.orgonomie.net

Zwar führt kein spontaner Weg vom „stabilen Hebel“ in Abb. 35 zum „labilen Hebel“, doch wenn lebendige Wesen Hebel benutzen, werden, gemäß dem pulsatilen Charakter der KRW, die Wege in beide Richtungen frei:

\[
\text{labil} \quad \longleftarrow \quad \text{stabil}
\]

Gl. 134

VI.2. Die Überwindung der Newtonschen Gesetze

VI.2.a. Von der KRW zur Pulsation

Die Mechanik sieht von praktisch allem ab, was „Natur“ ausmacht, teilweise sogar von der Form der Körper! Sie interessiert sich, ohne sich ihrer eigenen Grundlagen, die von Reich offengelegt wurden, bewußt zu sein, allein für eben dieses Fundament: die immaterielle (d.h. orgonotische) KRW.\(^{48}\) Auf dieser Grundlage läßt

\(^{48}\) Dies ist auch der tiefer Grund, warum Mechanik weitgehend mit Mathematik identisch ist. In der Mechanik kommen die einfachen energetischen Strukturen, genauer gesagt das nicht-lokale Funktionieren der Orgonenergie hinter der verwickelten und mathematisch nicht

\[\text{Feld} \]
\[\text{Orgonenergie-Einheit} \]
\[\text{Kern} \]
\[\text{Peripherie} \]
\[\text{organotisches System} \]
\[\text{bioenergetisches Zentrum} \]
\[\text{Materie} \]
\[\text{physikalischer Körper} \]
\[\text{Schwerpunkt} \]
\[\text{Gl. 135} \]
\[\text{Gl. 136} \]
\[\text{Gl. 137} \]

Dabei sind die unteren Varianten von Gl. 135, Gl. 136 und Gl. 137 jeweils funktionell identisch mit der Pulsfunktion p, die Oberen mit der Wellenfunktion W.

Die funktionelle Bedeutung des Schwerpunktes Gl. 137 wird deutlich, wenn man die Wurfbahn eines Chinaböllers betrachtet: egal ob (und wie) er explodierte oder nicht, der Schwerpunkt des Chinaböllers beschreibt (bei exakt gleichen Anfangsbedingungen) jeweils die mathematisch identische Bahn. Dabei kann es beschreibbaren komplexen Wirklichkeit zum Ausdruck. Das bedeutet nichts anderes, als daß die Mathematik organotische Strukturen erforscht. (Siehe dazu Kapitel IV.)

Bei einem aufgepumpten Fahrradschlauch liegt der Schwerpunkt weit weg von jeder Materie im Mittelpunkt des Rings.

Die unbedingte Erhaltung des Schwerpunktes erzwingt, daß alle Kräfte, die zwischen den Teilen dieses „materiellen Beiweskes“ wirken, sich gegenseitig so ausgleichen, daß der Schwerpunkt nicht verschoben wird, d.h. seine vorgeschriebene organotische Flugbahn erhalten bleibt. Das kann man sich beispielsweise anhand zweier miteinander rangelnder Kinder vergegenwärtigen. Wenn sie sich umklammern, bilden sie einen (physikalischen) Körper mit einem gemeinsamen Schwerpunkt. Schubst nun eines der Kinder das andere von sich weg, wird das stoßende Kind mit der gleichen Kraft nach hinten geschleudert, mit der er seinen Spielkameraden wegstößt: Aktion ist gleich Reaktion, weil der Schwerpunkt durch innere Kräfte verschoben werden darf.

Dieses dritte Newtonsche Gesetz bedingt beispielsweise, daß der Stuhl, auf dem wir sitzen, uns mit der gleichen Kraft nach oben drückt, mit der wir von der Erdanziehungskraft nach unten gezogen werden.

\[
\text{Kraft} \quad \rightarrow \quad \text{Gegenkraft}
\]

Gl. 138

Ist eine Kraft durch äußere Bedingungen stärker als die andere, entsteht positive oder negative Beschleunigung. Man denke etwa an Zugkraft und Reibungskraft.

Der Schwerpunkt ist mit dem bioenergetischen Zentrum funktionell identisch (Gl. 136 und Gl. 137). Kräfte, die zwischen den Teilen wirken, die den Schwerpunkt umgeben, sind entsprechend funktionell identisch mit dem Wechsel von Kontraktion und Expansion und den damit einhergehenden organotischen Strömungen des menschlichen Körpers. Dabei handelt es sich aber wirklich nur um funktionelle Entsprechungen, denn schließlich beschäftigen sich Statiker beim „Freischneiden“, d.h. dem Ersetzen von Strukturen durch Kraftpfeile, nicht mit „Strömungen“. Es ist nicht die Frage, ob tatsächlich Orgonenergie durch die Streben und Bögen einer Kathedrale oder einer Brücke fließt, denn schließlich verbrauchen Gebäude keine Energie, wenn sie „einfach nur dastehen“. Trotzdem leiten auf den ersten Blick vollkommen funktionslose Bögen Druck- und Spannkkräfte ab, so als würde tatsächlich etwas fließen.50** Heben sich diese virtuellen „Ströme“ gegenseitig so auf, daß nichts „ab- oder zufließt“, hat der Statiker seine Arbeit gut gemacht: der Schwerpunkt des Gebäudes bleibt an seinem Ort.

Das „Fließen“ und „Pulsieren“, das den Kräften zugrunde liegt, kann man sich mit Hilfe von Kraftmessern vergegenwärtigen. Die Feder eines Kraftmessers wird entsprechend der wirkenden Kraft langgezogen. Ziehen zwei Kraftmesser mit jeweils

50** Es „vergeht keine Zeit“, sondern die dritte Raumdimension „öffnet sich“. Drücke („Kraft pro Fläche“) sind eine Exemplifikation des in Kapitel V im Zusammenhang mit der dritten Dimension diskutierten Verhältnisses von Fläche und „Tiefe“.

www.orgonomie.net

VI.2.b. Von der Pulsation zur KRW

Reich gelang die massfreie Darstellung der Energie mittels der Unterscheidung von Puls p und Welle W in der sich kreiselwellenartig fortbewegenden Orgonenergie ξ.

$$\xi = \oint L^3 \cdot t^{-2} = \oint p \cdot W$$
Gl. 139

Formal könnte daraus folgende Gleichung für die organotische Kraft F abgeleitet werden, wobei man auf das zweite Newtonsche Gesetz zurückgreift, demzufolge Kraft F „die zeitliche Ableitung des Impulses p ist“: $F = \frac{p}{t}$.

$$F = \oint L^2 \cdot t^{-2} = \oint p \cdot t^{-1}$$
Gl. 140

Während also Energie die Bewegung oder Abfolge organotischer Impulse ist (Gl. 139), man denke dabei beispielsweise an auflaufende Meereswellen, ist Kraft gleichbedeutend mit Impulsänderung (Gl. 140).

Jedoch gibt es offensichtlich entscheidende Unterschiede zwischen der Kraft, die Newton mit seinen drei Gesetzen beschrieben hat, und der „organotischen Kraft“. Werfen wir dazu einen Blick auf das erste Newtonsche Gesetz, das sogenannte „Trägheitsgesetz“, demzufolge Körper in Ruhe verharren (bzw. in gleichförmiger gradliniger Bewegung), solange eine äußere Kraft sie nicht aus diesem Zustand herauszwingt. Wir alle wissen, daß das nur die halbe Wahrheit ist, denn wir können uns, anders als der träge Fels neben uns, erheben und unseren Schwerpunkt entgegen dem ersten Newtonschen Gesetz selbständig überall hin verlagern, wohin wir wollen. Wir sind dazu in der Lage, weil wir innerlich pulsieren. Reich zeigte dies, indem er in seiner Bion-Forschung eine bestimmte Menge Orgonenergie durch eine

51 Wir verzichten hier auf Differentialgleichungen, weil sie in unserem Zusammenhang nichts zur Erhellung beitragen, sondern die Darstellung nur verkomplizieren. In Kapitel VII werden wir uns mit der Infinitesimalrechnung beschäftigen.
Membran von der Umwelt abtrennte. Die „inneren Impulse“ ermöglichen es den
dergestalt entstandenen Organismen, sich frei in der Umwelt zu bewegen. Bei
Amöben kann man beobachten, wie sich die nach außen fließenden orgonotischen
Ströme (Expansion) unmittelbar in Bewegung umsetzen. Zentral ist dabei, Reich
zufolge, der Gegensatz zwischen dem nach außen gerichteten lebendigen Impuls
und dem ihm entgegengesetzten elastischen mechanischen Hindernis, der
Membran. Durch die Membran wandelt sich die primordiale energetische Pulsation in
die „materielle“ Pulsation der Organismen um mit deren diversen mechanischen

In der Bion-Forschung wurde Materie mittels Kochen, Autoklaven und Glühen
sozusagen ausreichend „geschmeidig“ gemacht, damit sie mit der Orgonenergie
„mitzuschwingen“ vermochte. Der energetische Impuls E kann so auf die materielle
Membran M (E → M) einwirken, woraufhin die Membran dem energetischen Impuls
einen Widerstand entgegengesetzt (M → E).

\[E \rightarrow M \]
\[M \rightarrow E \]

Gl. 141

Strukturen, die normalerweise streng dem „nicht-lokalen“ Hamiltonschen Prinzip
folgen, wird auf diese Weise das „lokale“ Strömen der Orgonenergie aufgeprägt.
Entsprechend können sich Lebewesen entgegen den Gesetzen der Mechanik, die
immer „den kürzesten Weg vorschreiben“, bewegen. Beispielsweise kann ein
Lebewesen einen Berg erklommen und auf fast beliebigen Wegen herabsteigen (vgl.
Abb. 31). Oder anders ausgedrückt: „Objekte mit inneren Impulsen“ sind nicht mehr
passive Sklaven der äußeren KRW, sondern können sich selbst frei auf eigenen
KRW-Bahnen bewegen. Man denke etwa an den Flug einer Drossel oder das
Laufen eines Hundes!

Bei rein mechanischen Systemen, die keinerlei Voraussetzungen für lebendiges
Funktionieren haben, kann man „inneren Impulse“ simulieren, indem die
orgonotischen Ströme durch ihr funktionelles Äquivalent, d.h. „Newtonscbe
Kräfte“ ersetzt werden. Diese Kräfte werden einfach durch eine äußere materielle
Umfassung eingegrenzt, so daß „innere Impulse“ gegeben sind, die das
mechanische Gebilde in Bewegung setzen:

\[\text{innere Impulse} \]

\[\text{orgonotische Ströme} \]

\[\text{innere Kräfte, Orgonmotoren} \]

Gl. 142

www.orgonomie.net
In einem anderen Zusammenhang habe ich bereits auf die Arbeit von Arindam Banerjee hingewiesen (Erstrahlung, Überlagerung und Relativität (www.orgonomie.net/hdorelativ.htm). Das erste Newtonsche Gesetz, demzufolge sich nichts durch innere Kräfte fortbewegen könne, werde, so Banerjee, durch das Funktionieren der Organismen widerlegt. Es gelte daher die Grundqualität des Lebens, die selbständige Bewegung, auf mechanische Objekte zu übertragen. Lässt man beispielsweise ein ferngesteuertes Spielzeugauto innerhalb einer Kiste gegen eine Wand fahren, wird sich die Kiste in die entsprechende Richtung bewegen. „Wenn ein Körper einen anderen einschließt, der von beträchtlicher Masse ist und ihn von innen heraus anstößt, ergibt sich für beide Systeme eine Bewegung, die von Ausmaß, Richtung und Dauer der inneren Stöße abhängig ist, und der Art und Weise, wie die einander entgegengesetzten Kräfte der Natur gelenkt werden.“ Ausgehend von dieser denkbar einfachen Überlegung lassen sich Maschinen, welche Banerjee als Internal Force Moved Bodies bezeichnet, konzipieren, die mittels eines hydraulischen Systems die innerhalb des Körpers gegeneinander gerichteten kinetischen Energien so umlenken, daß der Körper sich nicht nur hin und her bewegt, oder allenfalls nur vorwärts rückt, sondern sich kontinuierlich weiter bewegt und dabei ständig an Geschwindigkeit zunimmt (Banerjee 2003).
VII. Die Lebensenergie (Orgon) in der Schulphysik

Kapitel VI befaßte sich mit dem funktionellen Gehalt der Mechanik, wie wir ihr alltäglich begegnen, wenn wir etwa Nüsse mit Hilfe der Hebelgesetze knacken und die zersprüngten Schalen, auf dem schnellsten Weg auf den Boden gelangen. Im folgenden soll gezeigt werden, wie die Größen der Physik (Zeit t, Länge L, Masse m, usw.) CFPs sind, die jeweils für eins stehen: die Orgonenergie in der Materie. Erst von daher macht das besagte Kapitel VI, das das Wirken der Orgonenergie in der Materie aufzeigt, überhaupt Sinn. Um den funktionellen Zusammenhang zu wahren, müssen dabei die drei Newtonschen Gesetze erneut erarbeitet werden.

VII.1. Die mathematischen Grundlagen der Schulphysik

VII.1.a. Algebra

Im Kapitel I haben wir die „orgonometrische Algebra“, d.h. die grundlegenden Funktions-, Entwicklungs-, Gedanken-, und Schöpfungsgleichungen mit den dazugehörigen Buchstaben A, A1, A2, etc., x, y, N und V eingeführt.

Das Wort „Algebra“ geht auf das Arabische zurück und läßt sich mit „Ergänzen“ übersetzen. Hier soll Algebra für eine Methode stehen, bei der in Gleichungen nach einer Unbekannten gesucht wird nach dem Muster „10 - x = 7 → x = 10 - 7“. In der Orgonometrie suchen wir entsprechend nach Funktionen und CFPs. Die enge Beziehung von Algebra und Orgonometrie sieht man daran, daß die Algebra ebenfalls Verallgemeinerung und Vereinfachung ist. Beispielsweise läßt sich 1 + 1 = 2 verallgemeinern zu x + x = 2x und dies wiederum vereinfachen zu x = x.

Der alles entscheidende Unterschied zwischen diesen beiden Ansätzen ist, daß es in der Orgonometrie primär um qualitative Unterschiede geht, in der Algebra
ausschließlich um quantitative. Das wird deutlich, wenn man sich mit den Zahlen beschäftigt, die schließlich für das „x“ stehen.

Die natürlichen Zahlen kann man sich mit etwas grundlegendem als der Arithmetik vergegenwärtigen: der Mengenlehre. Null entspricht dann der Nullmenge (dem Nichts, im Sinne von „kein Gegenstand“), die Eins irgendeinem beliebigen Element, die Zwei irgendeinem beliebigen Element, zwei Elementen, etc.:

\[
0 = \{\emptyset\} \\
1 = \{\emptyset, \ast\}; \{\emptyset, \varnothing\} \text{ etc.} \\
2 = \{\gamma, \mathbb{H}\}; \{\emptyset, \varnothing\}; \{\varnothing, \mathcal{O}\} \text{ etc.} \\
3 = \{\cup, \sqcup, \parallel\}; \{\sharp, \equiv, \mathbb{P}\}; \{\bullet, \mathbb{I}, \Delta\} \text{ etc.}
\]

Die natürlichen Zahlen sind demnach so etwas wie CFPs, d.h. sie fassen verschiedene Elemente zusammen. Das gelingt ihnen aber nur, weil sie selbst vollständig inhaltsleer sind. „3“ selbst bedeutet gar nichts, da es für unendlich viele „drei beliebige Elemente“ steht. Das Wesen der Mathematik wird damit durch Gl. 144 ausgedrückt (siehe Reich 1950d, S. 173):

\[
\begin{align*}
1 & \rightarrow \infty \\
\text{Gl. 144}
\end{align*}
\]

Für die „1“ kann man beliebige andere Zahlen einsetzen. Das Wesen der Mathematik ist demnach das Unendliche. Im krassen Gegensatz zur Orgonometrie gibt es hier keine Hierarchie, d.h. Gleichungen wie die folgenden wären vollkommen sinnlos und würden die Mathematik ad absurdum führen:
Oder mit anderen Worten: die mechanistische Mathematik ist kurzschlüssig. Dies macht aber wiederum ihren funktionellen Gehalt aus, weil auf diese Weise Dinge gleich behandelt werden können – in besonderen Zusammenhängen handhabbar gemacht werden können –, die nichts miteinander verbindet. Beispielsweise sind ein beliebiger Grashalm und ein weiterer beliebiger Grashalm zwei Grashalme; ein Krater auf dem Mars und die Leber eines Schwertwals zwei Gegenstände, etc.:

\[1 + 1 = 2 \]

Reich sagt dazu:

geartetes Instrument; es ist nur darin andersartig, daß es die Organempfindungen in mathematischer Form auszudrücken vermag. Die mathematische Formel ist also nur ein AusdrucksmitTEL unter anderen und nicht der Zauberstab, als der sie dem bornierten Verstande des mystischen Menschen erscheint. Es ist der lebendige Organismus, der seine Empfindungen anordnet, umgruppiert, in Zusammenhang bringt, ehe er sie mathematisch formuliert. (Reich 1949a, S. 99f)

Und weiter an oderHerer Stelle:

Die ausschließlich quantitative Natur der Mathematik stellt das größte Hindernis für eine abstrakte funktionelle Annäherung an die Natur dar. In der mechanistischen Physik hat der ausschließlich quantitative Grundgedanke zu Abstraktionen ohne jeden Inhalt geführt, d.h. zum Ausschluß aller Sinneswahrnehmungen. Wir wissen, wie schlimm wegen des vollständigen Fehlens von beobachtbarem Gehalt die Lage in der Grundlagenforschung geworden ist. Demgegenüber wurde in der Orgonomie die direkte Beobachtung und Sinneserfahrung der funktionellen Eigenschaften der Natur (…) zu den vordringlichen Voraussetzungen unserer Naturerforschung. Bevor wir irgendetwas messen können, müssen wir uns dessen, was wir messen, bewußt sein, es sehen und fühlen. Da die Natur funktionell und nicht mechanistisch ist, ist eine ausschließlich quantitative Herangehensweise von vornherein unmöglich. (Reich 1950d, S. 164)

VII.1.b. Differenzieren

Die hellenistische und die chinesische Kultur (der Rest ist aus naturwissenschaftlicher Sicht nicht der Erwähnung wert) haben versucht, die Materie zu verstehen, indem sie vom Menschen ausgingen, d.h. über haltlose Spekulation (oder besser gesagt „Projektion“). Die Flugbahn eines Steins wurde etwa damit „erklärt“, daß er aus seinem „natürlichen Ort“ herausgerissen worden sei und alles versuche, so schnell wie möglich zu diesem zurückzukehren.

Erst nachdem Galilei die Fallgesetze erforscht hat, gibt es eine klare Trennung zwischen Subjekt und Objekt, d.h. die Materie wird wirklich objektiv, aus ihren eigenen Voraussetzungen heraus beobachtet. Seitdem versucht die Physik in die Materie einzudringen, d.h. ihr Wesen zu erkennen.

Den ersten Schritt in diesem Forschungsprogramm machte Newton. Anders als Galilei gab er sich nicht damit zufrieden, die Durchschnittsgeschwindigkeit eines Objekts zu erforschen. Man nehme etwa ein Auto, das in einer Stunde (h) von Hamburg zum 100 km entfernten Bremen fährt: „Hamburg minus Bremen gleich 100“. Seine Geschwindigkeit ist dann 100 km/h. Wie potentiell absurd diese Betrachtungsweise ist, wird deutlich, wenn das Auto nur bis Sittensen fährt und dann auf halber Strecke umkehrt, um nach einer Stunde wieder zurück in Hamburg zu

www.orgonomie.net
sein: „Hamburg minus Hamburg gleich 0“, d.h. die Durchschnittsgeschwindigkeit wäre 0 km/h!

Ein pragmatischer „chinesischer Wissenschaftler“ würde verächtlich mit den Schultern zucken und einfach sagen: „Unsinn, das sind zweimal 50 km und die Durchschnittsgeschwindigkeit war deshalb 100 km/h!“ Aber was ist etwa, wenn das Auto mit 250 km/h über die Autobahn gebrettert wäre und wegen dem Stadtverkehr trotzdem eine Stunde von einem Stadtzentrum zum anderen gebraucht hätte? Auch hier wäre die Durchschnittsgeschwindigkeit 100 km/h, man sieht jedoch, daß uns mit der ausschließlichen Betrachtung der Durchschnittsgeschwindigkeit das tatsächliche Verhalten des Objekts durch die Lappen geht.

Er tat das, was jeder Autofahrer macht, wenn er auf seinen Tacho schaut und sieht, wie schnell er gerade fährt. Newton konnte sich im übertragenen Sinne in jedes beliebige bewegte Objekt „versetzen“ und auf dessen Tacho schauen“.

Das war der Beginn der eigentlichen Naturwissenschaft, d.h. Subjekt (der Forscher) und Objekt (die Materie) nahmen eine funktionelle Beziehung auf, statt daß das Objekt einfach seine „Weltsicht“ auf das Objekt projizierte:

![Diagramm](Gl. 146)

Sich in die Materie nicht spekulativ, sondern konkret hineinversetzen zu können, macht es möglich, die Orgonenergie im Inneren der Materie aufzuspüren. Reich hat mit dieser Herangehensweise die Orgonenergie in lebenden Organismen entdeckt:

Die Grundfrage aller Biologie ist nach der Herkunft der inneren Impulse des lebenden Organismus. Niemand zweifelt daran, daß sich das Lebendige vom Nichtlebenden durch die innere Herkunft der Bewegungsimpulse unterscheidet. Der innere Bewegungsimpuls kann nur einer innerhalb der Grenzen des Organismus wirkenden Energie zugeschrieben werden. Die Frage, woher diese Energie
VII.1.c. Integrieren

Tatsächlich haben wir hier die Entsprechung zu Gl. 136 vor uns, wo es um die Orgonenergie-Einheit ging. In der oben beschriebenen Differentiation, als wir uns mit der Geschwindigkeit eines Objekts zu einem bestimmten „Zeitpunkt“ beschäftigten, beschrieben wir den Kern, im Gegenteil der Differentiation, der Integration, beschreiben wir nun das Feld. Betrachten wir dazu die Definition der Energie E:

\[E = F \cdot \int L \]

E wird definiert als die Arbeit, die eine Kraft F über eine bestimmte Strecke L hinweg leistet: \(E = F \cdot L \). E kann man sich entsprechend wie einen „Flächeninhalt“ vorstellen, den man berechnet, indem man die eine Seite der Fläche („F“) mit der anderen Seite der Fläche („L“) multipliziert. Das Problem ist, daß in der wirklichen Welt die Kraft nicht konstant sein muß, sondern sich auf der Wegstrecke L ständig ändern kann. Um die Arbeit (= Energie) zu bestimmen, die zwischen den Punkten L₁ und L₂ geleistet wurde, müssen wir infinitesimal schmale \([d(L)]\) und damit unendlich viele Teilabschnitte addieren, d.h. „integrieren“: \(E = \int F(L) \cdot d(L) \). Wie man dieses mathematische Wunder vollführt, hat ebenfalls Newton (und parallel dazu Leibniz) entdeckt.\(^52\)

Was bei dem Jonglieren mit den entsprechenden Gleichungen letztendlich herauskommt, ist, daß sich die Kraft zwar ändern mag, dabei jedoch die Energie konstant bleibt („\(K_2 + U_2 = K_1 + U_1 \)“). Oder mit anderen Worten: der „Flächeninhalt“ bleibt gleich, wenn ich die eine Seite der Fläche verkleinere und die andere entsprechend vergrößere – die Form der Fläche ändert sich, der Flächeninhalt nicht. Tatsächlich ist die Ableitung etwas komplizierter, aber darauf läuft letztendlich der Energieerhaltungssatz hinaus.

Was m.W. (!) noch niemand erkannt hat, ist, daß der Energie, wegen ihrer „Flächeneigenschaft“ die Eigenschaft einer raumfüllenden Substanz („Äther“) inhärent ist. Normalerweise wird nämlich aus dem Energieerhaltungssatz abgeleitet, daß die Größe Energie kaum mehr ist als eine bloße Bilanzgröße am Ende abstrakter physikalischer Kalkulationen.

Berechnet man das ganze im dreidimensionalen Raum, kann man sich die Energie als einen fixen Volumeninhalt vorstellen. Das funktioniert aber nur, wenn man es mit konservativen Kräften zu tun hat, wie Gravitation oder der Coulombkraft des elektrischen Feldes, also jeder fundamentalen Kraft. „Konservative Kraft“ bedeutet

\(^{52}\) Man sucht nach der Ursprungsfunktion, deren erste Ableitung die Funktion ergibt, die den Graphen der Kraft F beschreibt.
dabei einfach, daß die Energie nur von einer Dimension abhängt: es gibt bei ihr nur „oben und unten“ nicht „links und rechts, vorne und hinten“. Es ist egal, wie ich den Berg hinauf- oder herabsteige (fast senkrecht oder fast waagerecht), energetisch zählt nur die zurückgelegte vertikale Höhe, nicht der horizontale Weg. Oder mit anderen Worten: es geht um das Wechselspiel von kinetischer (K) und potentieller Energie (U): \(K_2 + U_2 = K_1 + U_1 \). Uns soll hier aber der besagte „Flächeninhalt“ bzw. der „Volumeninhalt“ interessieren: die Vorstellung von einer inkompressiblen Flüssigkeit in einem Ballon, den wir beliebig formen können und das Volumen trotzdem konstant bleibt.\(^5\) Wir haben dann:

\[\text{Orgonenergie} \quad \text{Gl. 147} \]

\[\text{Energie} \quad \text{„Äther“} \]

VII.1.d. Vektoren

In Abschnitt VII.1.b. hatten wir das Beispiel mit der Strecke zwischen Hamburg und Bremen mit Sittensen genau in der Mitte. Man kann sagen, ich fahre 50 km bis Sittensen und von dort weitere 50 km. Wo bin ich dann? Ich könnte von Sittensen weitere 50 km nach Bremen fahren oder 50 km nach Hamburg zurück. Um eine sinnvolle Aussage zu tätigen, muß ich also eine Richtung angeben.

In einer Dimension gibt es nur zwei Möglichkeiten der Bewegung, die ich mit einem Plus- bzw. Minuszeichen beschreiben kann. Kommt eine zweite oder gar dritte Dimension hinzu, komme ich um den „Vektor“ nicht herum. Ich könnte von Sittensen aus beispielsweise 50 km bis Stade fahren:

\(^{5}\) Mit den Flüssigkeiten und ihrer Entsprechung zur Orgonenergie („kosmisches Fluidum“) werden wir uns im 3. Abschnitt beschäftigen.
Wenn ich das mit Hilfe der Vektoren a und b zeichne, ist offensichtlich, daß mich die Summe dieser beiden Vektoren, der Vektor c, weit effektiver nach Stade bringen würde. (Norddeutschland ist so flach, daß wir hier oben keine Straßen benötigen!)

In Anschnitt VII.1.b. haben wir gesehen, daß mit dem Schritt von der Durchschnittszurst zur Momentangeschwindigkeit zumindest ansatzweise das Qualitative Einzug in die Physik nahm. Man denke nur daran, daß formal die Durchschnittsgeschwindigkeit auf der Fahrt von Hamburg nach Sittensen und zurück gleich 0 war! Mit der Einführung des Vektors wird ein weiterer Weg beschritten, um das zu beschreiben, was wirklich geschieht.

Im obigen zweidimensionalen Beispiel ist das Resultat der Vektor c, der von Hamburg nach Stade zeigt. Orgonometrisch ist der Vektor c das Fusionsprodukt der beiden Vektoren a und b, da es die beiden Wege zusammenfaßt. Bedeutsam ist, daß sich ausnahmslos die Bewegung aller Objekte in dieser Welt auf diese Weise beschreiben läßt! Es läßt sich in jedem gegebenen Augenblick ein Vektor zeichnen, der jede beliebige Bewegung „funktionell zusammenfaßt“.

Wir haben also ein Beispiel für Überlagerung vor uns:

54 Es ist nicht üblich, in gedruckten Texten, den Vektorgrößen mit einem Pfeil zu kennzeichnen, vielmehr benutzt man Fettdruck. Wegen der Eindeutigkeit, die stets die einzige Leitlinie wissenschaftlicher Texte sein sollte, ignoriere ich diese Konvention. Sie wurde eh nur wegen drucktechnischer Notwendigkeiten eingeführt!

Das ist nicht nur eine komplette Gedankengleichung, sondern tatsächlich eine komplette Funktionsgleichung (Überlagerung). Weisen aber nicht die beiden Vektoren \(\mathbf{a} \) und \(\mathbf{b} \) in divergierende Richtungen und welche „Strömungen“ sollen sich hier überlagern? Wie in Kapitel VI dargelegt, ist Mechanik mit Nicht-Lokalität verbunden, so daß nicht unbedingt etwas „strömen“ muß.

Die Ableitung des Ortsvektors nach der Zeit \(t \) ergibt den Geschwindigkeitsvektor \(\mathbf{v} \) und dessen Ableitung nach \(t \) den Beschleunigungsvektor \(\mathbf{a} \). Das besondere ist nun, daß es nicht nur zu einer Geschwindigkeitsänderung (Beschleunigung, \(\mathbf{a} \)) kommt, wenn sich die Größe der Geschwindigkeit verändert, sondern, da es sich ja um einen Vektor handelt, auch deren Richtung. Bei der Änderung der Geschwindigkeit weisen die beiden Vektoren \(\mathbf{v} \) und \(\mathbf{a} \) in die gleiche Richtung. Man denke etwa an das Beispiel aus Abschnitt VI.1.b., wo jemand zeitweise mit 250 km/h über die Autobahn zwischen Hamburg und Bremen gebrettert ist, sich im Durchschnitt jedoch mit 100 km/h bewegt hat. Wenn es jedoch zu einer Änderung der Richtung kommt, ist der entsprechende Vektor \(\mathbf{a} \) auf das Zentrum des Kreises (bzw. Kreissegments) gerichtet, der in diesem Augenblick virtuell gezeichnet wird.

Man denke dabei an den gleichen Autofahrer auf dem Nürburgring. Selbst wenn er immer auf sein Tacho achtet und die ganze Strecke über stur 100 km/h fährt, wird das Auto doch beschleunigt. Die Richtung der Beschleunigung fällt mit dem Radius \(r \) des Nürburgringes (bzw. der jeweiligen Kurve des Nürburgringes!) zusammen und beträgt \(\mathbf{a} = -\frac{v^2}{r} \cdot \mathbf{e}_r \). „\(\mathbf{e}_r \)“ steht für den Einheitsvektor. Wichtig ist hier aber nur das Minuszeichen, das aussagt, daß der Einheitsvektor auf den Ursprung des Radius \(r \) zeigt. Mit Hilfe von Trigonometrie und Analysis läßt sich die Gleichung einfach ableiten, was im übrigen ein schönes Beispiel dafür ist, daß die Mathematik in mancher Hinsicht orgonometrisch strukturiert ist: nur so kann die Schulphysik überhaupt funktionieren!

Aus abstrakterer Sicht ist Beschleunigung das CFP von Kreisbewegung und Pulsation:

Gehen wir nun in den dreidimensionalen Raum, begegnet uns eine nicht minder kontraintuitive Überraschung: das Produkt zweier Vektoren auf der Ebene verweist entweder nach oben aus der Ebene heraus oder nach unten in die Ebene hinein. Das schreibt sich beispielsweise \(r \times v = z \). Was soll sich ein „normaler Mensch“ darunter vorstellen? Man stelle sich vor, die Strecke \(r \) wäre der Abstand zwischen Bremen und Hamburg und da wir Bremen in diesem Abstand mit der Geschwindigkeit \(v \) umrunden, können wir \(r \) als Radius eines Kreises betrachten und entsprechend eine Richtung zuordnen, die von Bremen nach Hamburg weist: wir haben den Vektor \(r \) vor uns. Das „Kreuzprodukt“ \(z \) gibt dann die Achse des Kreises an, die durch Bremen hindurchgeht. Das Kreuzprodukt wird uns im Zusammenhang mit der kosmischen Überlagerung nochmals begegnen.

VII.2. Körper in Bewegung

VII.2.a. Masse

Das Trägheitsgesetz besagt einfach, daß ein Objekt in seinem Bewegungszustand verharrt, wenn es keinen äußeren Kräften ausgesetzt ist. Ein Stein bleibt liegen oder bewegt sich mit konstanter Geschwindigkeit, solange keine äußeren Kräfte auf ihn wirken, insbesondere keine Reibung. In dieser Beziehung gibt es keinerlei Unterschied zwischen einem ruhenden (\(v = 0 \)) und einem sich gleichmäßig bewegenden Gegenstand (\(v = \text{const.} \)). Daß das so sein muß, wird deutlich, wenn man sich vergegenwärtigt, daß es (zumindest potentiell) eine unendliche Anzahl von
„inertialen Beobachtern“ gibt. Das bringt uns zurück zu Gl. 144. Für mich, der ich hier am Tisch sitze, ruht der Bleistift, der vor mir liegt (v = 0 km/h). Für den Autofahrer, der von der Autobahn abgekommen mit 100 km/h durch mein Zimmer donnert, bewegt sich der Bleistift in entgegengesetzter Richtung an ihm vorbei (v = -100 km/h).

Das mag nicht sonderlich weltbewegend klingen, doch mit dem Trägheitsgesetz kommt die Relativitätstheorie ins Spiel: in einem geschlossenen Raum ist kein mechanisches Experiment in der Lage festzustellen, ob der Raum ruht oder sich gleichmäßig bewegt. Das ändert sich drastisch, wenn der Raum beschleunigt wird.

Die besagten Kräfte (F) kommen ins Spiel, wenn man nicht mehr nur eine gleichmäßige Geschwindigkeit, sondern die Änderung der Geschwindigkeit betrachtet. Siehe Gl. 149, die mit dem zweiten Newtonschen Gesetz verbunden ist:
\[F = m \cdot a \]. Die Masse m eines Objekts ist demnach gleichbedeutend mit dem Widerwillen des Objekts, beschleunigt (a) zu werden. Ich kann den Bleistift mit dem kleinen Finger wegschnippen, aber den ganzen Schreibtisch mit seiner so viel größeren Masse aus seiner konstanten Geschwindigkeit (v = 0) zu reißen, d.h. ihn zu beschleunigen, bedarf der Kraft meines ganzen Körpers, selbst wenn der Schreibtisch reibungsfrei auf einem Luftkissen schwebte.

Hier sind wir beim Kern der Schulphysik angelangt: Dinge müssen durch eine Kraft in die Beschleunigung a gezwungen werden, während die konstante Geschwindigkeit (a = 0) kräftefrei ist.

Mit anderen Worten kommt es, wenn Kräfte mitspielen, (scheinbar) zur mechanomystischen Abfolge von Ursache und Wirkung, gegen die Reich seinen Funktionalismus stellte, der zwischen Ursache und Wirkung einen dritten, unbekannten Faktor gesetzt hat:

\[\text{Ursache} \quad \square \quad \text{Wirkung} \]

\[\text{Gl. 150} \]

In der Formulierung \(F = m \cdot a \) steht „F“ (Kraft) für die Ursache und „a“ (Beschleunigung) für die Wirkung. Entsprechend läßt sich die daraus abgeleitete Gleichung \(m = F/a \) wie folgt orgonometrisch darstellen:
Die Masse m steht an dieser Stelle für die Orgonenergie in der Materie. Siehe dazu Gl. 96. Außerdem sei daran erinnert, was ich in Kapitel VI.2.a. über die Bedeutung des im Einzelfall vollkommen immateriellen („massefreien“) Schwerpunkts von Körpern geschrieben habe.

Von der Reibung wollen wir hier absehen. Sie hat eine ähnlich strukturierende Funktion wie die Masse. Siehe dazu meine Erläuterungen zur Erstrahlung in Erstrahlung, Überlagerung und Relativität (www.orgonomie.net/hdorelativ.htm).

VII.2.b. Jenseits der Masse

Betrachten wir nun einen Zirkusartisten, der mit seinem Fahrrad ein waghalsiges Looping macht:

56 Von der Reibung wollen wir hier absehen. Sie hat eine ähnlich strukturierende Funktion wie die Masse. Siehe dazu meine Erläuterungen zur Erstrahlung in Erstrahlung, Überlagerung und Relativität (www.orgonomie.net/hdorelativ.htm).
Warum fällt der Radfahrer, solange er eine gewisse Geschwindigkeit einhält, nicht vom höchsten Punkt herab? Wirklich alle Kräfte ($F = m \cdot a$) weisen dort nämlich nach unten, d.h. sowohl die Gewichtskraft, die zu diesem Zeitpunkt auf den Mittelpunkt des Kreises weist, als auch die „Normalkraft“, d.h. die Kraft, mit der der Untergrund gegen das Fahrrad drückt! Das Rad fällt tatsächlich nach unten, genauso wie der sprichwörtliche Apfel nach unten fallen würde, die Sache ist nur, daß sich der Radfahrer so schnell vorwärtsbewegt, daß dieser Fall vom Kreis sozusagen aufgefangen wird.

Wir haben es mit Vektoren zu tun: der Radfahrer folgt nicht dem Vektor, der senkrecht Richtung Erde weist (v/t), weil diesem der Vektor hinzuaddiert werden muß, der horizontal gerichtet ist (v). Der Radfahrer bleibt an der Bahn haften, solange der sich jeweils in jedem infinitesimal kleinen Zeitabschnitt bildende resultierende Vektor zumindest der Krümmung der Loopingkurve entspricht.

Formal ist das die gleiche Situation, wie bei Projektilen, die, waagerecht von einem hohen Turm abgefeuert, in immer weiterer Entfernung auf den Boden fallen, bis schließlich ein Projektil mit einer Geschwindigkeit der Kanone entweicht, die es zum Satelliten macht, d.h. es wird aufgrund der Vektoraddition in alle Ewigkeit auf den Boden fallen. Es bewegt sich derartig schnell, daß sich die Erde bereits weiter fortbewegt hat und nicht mehr da ist, wenn das Projektil den Boden erreichen würde. Verständlich wird dieses aller Intuition widerstrebende und unlogisch wirkende Bild, wenn wir den Mond als ein derartiges „Projektil“ betrachten. Er fällt ständig durch den Mittelpunkt der Erde, nur daß die Erde selbst schon längst vorbeigestrichen ist.

Was wir hier vor uns haben, ist nichts anderes als die kosmische Überlagerung, die in den drei Newtonschen Gesetzen dargestellt sozusagen schlummert. Reich schreibt dazu:

Die Skizze (Abb. 39) führt die tatsächliche Wechselbeziehung vor. Erde und Mond bewegen sich rotierend im Raum vorwärts,
und ihre offenen (nicht geschlossenen) Bahnen nähern sich gegenseitig an und laufen wieder auseinander. Es sind also nicht die schweren Massen, sondern die BEWEGUNGSBAHNEN der schweren Massen, die zusammentreffen. Der Mond „dreht sich nicht um die Erde“, denn beide bewegen sich auf einer offenen, spiralförmig gekrümmten Linie. Außerdem erreicht der Mond den Erdmittelpunkt nicht. Er trifft allerdings tatsächlich auf einen Punkt im Raum, an dem sich der Erdmittelpunkt einmal befand oder früher oder später befinden wird. Der kosmische Orgonenergestrom, der Erde wie Mond mit sich trägt – in dieselbe Richtung, auf derselben Ebene und in perfekt aufeinander abgestimmtem Temporhythmus –, ist in Wahrheit verantwortlich für den mit der Schwerkraft begründeten freien Fall. Erst indem wir auf das gemeinsame Funktionsprinzip von Erde und Mond, den Orgonenergestrom, Bezug nehmen, gewinnen ansonsten widersprüchliche Aussagen zur Gravitation von Himmelskörpern Gültigkeit. (Reich 1951a, S. 119f)

Abb. 39
"Der Mond (M) 'fällt' zum Zentrum (Z) der Erde (E)."

VII.2.c. Himmelsmechanik

Die drei Gesetze Keplers, die die Himmelsmechanik beschreiben, verweisen auf das im vorigen Abschnitt beschriebene Funktionieren jenseits der Masse.

Das zweite Keplersche Gesetz besagt, daß in gleichen Zeitabschnitten der Radius des Planeten die gleiche Fläche überstreicht. Das ist natürlich nichts anderes als
Ausdruck des Energieerhaltungssatzes, den wir bereits in VI.1.c. beschrieben haben („die Flächen bleiben konstant“).

Das dritte Gesetz verweist darauf, daß diese kosmische Energie masselos ist. Es besagt, daß eine bestimmte Konstante C für alle Planeten gleich ist:

\[a^3 / T^2 = C. \]

„a“ steht hier für die mittlere Entfernung von der Sonne und „T“ für die Umlaufzeit des Planeten. An dieser Formulierung ist zweierlei bemerkenswert: 1. ist sie masseunabhängig (nirgends taucht hier die Masse m auf!) und 2. hat sie die gleiche Dimension wie die kosmische Orgonenergie. Siehe Gl. 97.

57 Leider hat Kepler die Konstante genau umgekehrt geschrieben („\(T^2 / a^3 = C \)“). Erst Reich hat die wirkliche Bedeutung der Konstanten durchschaht und sie sozusagen vom Kopf auf die Füße gestellt (Reich 1957b, S. 133).

58 An vier Punkten der Ellipse sind die beiden Radien gleich lang. Siehe dazu meine Ausführungen in Kapitel IV.
Newton schloß aus diesen Gesetzen auf das zugrundeliegende Kraftgesetz der Bewegung des Mondes mit der Masse \(m \) im Abstand \(r \) und mit der Geschwindigkeit \(v \) um die Erde mit der Masse \(M \) (wobei wir der Einfachheit halber von der Ellipse absehen und von einem perfekten Kreis ausgehen): \(f \cdot \frac{M}{r^2} \cdot m = \frac{v^2}{r} \) oder vereinfacht \(f \cdot M = v^2 \cdot r \).

Damit sind wir wieder am Beispiel des vorherigen Abschnitts angekommen, denn mit dieser Gleichung läßt sich berechnen, wie schnell (\(v_1 \)) das erwähnte „Projektil“ sein muß, das wir von einem hohen Turm abschießen, damit es zu einem Satelliten der Erde wie der Mond wird. Oder mit anderen Worten: die Gleichung sagt uns, wie schnell das Objekt sein muß, um die Erdgravitation zu überwinden und in den kosmischen Orgonenergie-Ozean mit seiner ihm inhärenten Kreiselwellenbewegung einzutauchen. Damit das Projektil die Erde ganz verlassen kann, also kein Satellit wird, benötigt es gemäß \(2 f \cdot \frac{M}{4\pi^2} = v^2 \cdot r \) eine entsprechend höhere Geschwindigkeit (\(v_2 \)).

Der linke Teil dieser Gleichung ist die Ursache (\(f \) ist die universelle Gravitationskonstante, die beschreibt, wie groß die Gravitationskraft ist), der rechte Teil ist die beobachtete Wirkung entsprechend Gl. 150. Was ist das CFP? Es kann nicht die Masse sein, wie in der kompletten Gleichung Gl. 151, denn wir bewegen uns jenseits der Masse. Es ist die kosmische Orgonenergie, die uns im dritten Keplerschen Gesetz als die Konstante \(C = \frac{a^3}{T^2} \) begegnet ist und die Newton mit \(f \cdot M/4\pi^2 \) gleichgesetzt hat. Alle Komponenten zusammen haben hier die Dimension der massefreien Energie \(L^3/t^2 \) und wir erhalten die inkomplette Gleichung:

\[
\frac{L^3}{t^2} = f \cdot M \quad \text{Gl. 152}
\]

\[
v^2 \cdot r
\]

Der Unterschied zwischen der ersten Fluchtgeschwindigkeit (\(v_1 = \sqrt{f \cdot \frac{M}{r}} \)) und der zweiten Fluchtgeschwindigkeit (\(v_2 = \sqrt{2f \cdot \frac{M}{r}} \)) hängt damit zusammen, daß bei der kosmischen Orgonenergie mit wachsender Geschwindigkeit die gradlinige Vorwärtsbewegung gegenüber der Kreisbewegung (die beide zusammen die Kreiselwellen-Bewegung ergeben) zunehmend überwiegt (vgl. Reich 1957b, S. 129f).

VII.2.d. Die Kreiselwelle

Wir haben uns bereits in Kapitel VI.2.a. mit dem Massenmittelpunkt beschäftigt. All das oben gesagte, insbesondere aber das erste Newtonsche Gesetz, gilt auch für Mehrkörpersysteme, wenn man den Massenmittelpunkt \(M_z \) betrachtet. Nehmen wir
dazu vier beliebig im Raum verteilte Objekte M_1, M_2, M_3 und M_4. Von M_1 und M_2 wird der Massenmittelpunkt M_x ermittelt, usw. Die folgende Gleichung zeigt das:

$$M_1 M_x M_2 M_z$$

Letztendlich ist es das CFP M_z, das den Bewegungsgesetzen gehorcht, die Newton beschrieben hat. Und genauso sieht es aus, wenn man nicht „Massenpunkte“ wie M_1, M_2, M_3 und M_4 betrachtet, sondern einen massiven Körper, den man sich aus unzähligen Massenpunkten (M_n) zusammengesetzt vorstellen kann. Aus Gl. 153 ist unmittelbar ablesbar, daß es sich um ein Problem der Symmetrie handelt. Eine Symmetrie, die wir auch bei einem denkbar unebenmäßig geformten Körper durch simple Rotation herstellen können, um so zum Massenmittelpunkt zu gelangen.

Man stelle sich vor, jemand steht auf einer massiven Plattform, die reibungslos über dem Boden schwebt. Wenn ich mich bewege, bewegt sich auch die Plattform, weil sich etwas ereignet, was sich gemäß dem ersten Newton’schen Gesetz nicht ereignen darf: unser gemeinsamer Massenmittelpunkt verschiebt sich. Um das auszugleichen, bewegt sich kompensatorisch die Plattform so im Raum, daß der Massenmittelpunkt in seiner alten Position bleibt. Wenn ich auf der Plattform tanze, wird sich um den unverrückbaren Massenmittelpunkt schließlich ein virtueller symmetrischer Kreis bilden.

Springe ich von der Plattform mit der Geschwindigkeit v ab, versetze ich ihr einen Impuls $p = m \cdot v$ und sie, bzw. der Massenmittelpunkt, wird sich in alle Ewigkeit in entgegengesetzter Richtung von mir wegbewegen. Die Bewegung kann natürlich auch von außen kommen. Dazu können wir uns Gl. 153 als eine Art Billardspiel vorstellen: der Anstoß erfolgt bei M_z und pflanzt sich über M_x und M_y fort auf M_1 und M_2 sowie M_3 und M_4. Dabei bleibt der Impuls p erhalten, so als würde sich eine Masse in zwei Hälften aufteilen und die sich wieder halbieren, so daß am Ende vier Viertel übrigbleiben, sich aber an der Gesamtmasse m nichts ändert. Genauso ist die Größe $p = m \cdot v$ eine Konstante. Das heißt, daß nicht nur der Massenmittelpunkt M erhalten bleibt (d.h. nicht beschleunigt wird), egal wie oft sich ein Objekt aufspaltet, sondern auch der Gesamtimpuls p.

Man nehme irgendeinen Gegenstand und werfe ihn durch die Luft. Er wird zwei Dinge gleichzeitig tun: er wird sich vorwärtsbewegen und dabei rotieren – d.h. er wird eine *Kreiselwelle* vollführen! Vorausgesetzt natürlich, daß man ihn nicht an einem
Massenmittelpunkt weggeschleudert hat, sondern irgendwo außerhalb des Massenmittelpunktes. Wenn man beispielsweise ein 20 cm langes Lineal bei „10 cm“ anfaßt und weggeschleudert, wird sich das Lineal während der Vorwärtsbewegung nicht drehen, sehr wohl aber bei irgendeinem anderen „cm“. Das naheliegendste Beispiel für die Kreiselwelle in unserem Alltag ist jedoch der Reifen, der über eine Straße rollt mit seiner Einheit von Drehung und Vorwärtsbewegung. Welcher Autofahrer denkt beim Fahren schon an die Kreiselwelle? Daran, daß die Strecke, die er zurückgelegt hat, sich aus lauter „2π • r“ summiert!

Es ist informativ, wenn man die Größen der rotatorischen und der translatorischen Bewegung nebeneinanderstellt, da die „Rotationsgrößen“ ein besonderes Licht auf die Funktion der „Translationsgrößen“ werfen. Zunächst wäre die Geschwindigkeit \(v = \frac{L}{t} \) im Vergleich zur funktionell äquivalenten Winkelgeschwindigkeit \(\omega = \frac{\theta}{t} \) bei Rotationsbewegung zu nennen, wobei der Winkel „\(\theta \)“ dimensionslos ist. Hier zeigt sich, daß die Dimension Zeit \(t \) bei der Geschwindigkeit eine wichtigere Funktion hat als die Dimension Länge \(L \):

\[
\begin{align*}
\omega & \quad \text{(Gl. 154)} \\
v & \\
t
\end{align*}
\]

Ein ähnliches Ergebnis haben wir hinsichtlich der kinetischen Energie \(K \) bei Translationsbewegung \(K = m \cdot v^2 \), bei Rotationsbewegung entsprechend \(K_R = I \cdot \omega^2 \), wobei das Trägheitsmoment \(I = m \cdot r^2 \) das Produkt der Masse und dem Quadrat der Entfernung \(r \) vom Rotationsmittelpunkt ist:

\[
\begin{align*}
I & \quad \text{(Gl. 155)} \\
m & \quad \text{Gl. 155}
\end{align*}
\]

Das verweist darauf, daß die Masse \(m \) und die Länge (hier vertreten durch den Radius \(r \)) funktionell äquivalent sind, wie Reich dargelegt hat (Reich 1957b, S.136).

Entsprechend gilt für den Impuls \(p \):

59 Reich notierte dazu in seinem Tagebuch: „Mir schien die Einsteinsche Formel \(E = mc^2 \) zu veranschaulichen durch den Vorgang bei der Kreiselwelle = Wurf eines ungleichen Hantels. \(o----O \)” (Reich 1997, S. 257).

60 Auf den Faktor \(\frac{1}{2} \) verzichten wir der Übersichtlichkeit halber.

www.orgonomie.net
\[L = I \cdot \omega \]
\[p = m \cdot v \]
\[\text{Gl. 156} \]

„L“ wird als „Drehimpuls“ bezeichnet.

Und schließlich haben wir die Kraft F:

\[M = F \cdot r \]
\[F = m \cdot a \]
\[\text{Gl. 157} \]

VII.2.e. Kosmische Überlagerung

Anhand von Gl. 157 wird augenfällig, welche Größe entscheidend ist, um translatorische in rotatorische Größen zu überführen: der Radius r. Das wird auch deutlich wenn wir den Drehimpuls L (vgl. Gl. 156) wie folgt schreiben:\[L = r \cdot p. \]

Der Drehimpuls hat zwei bemerkenswerte Eigenschaften. Erstens läßt sich mit Hilfe der Vektorrechnung zeigen, daß man wirklich jedem gleichmäßig und gradlinig Bewegten Gegenstand einen Drehimpuls zuordnen kann. Was wieder erneut die Allgemeingültigkeit der Kreiselwelle erweist. Diese kontraintuitive Tatsache kann man sich vergegenwärtigen, indem man sich einen Diskuswerfer vorstellt. Er dreht sich wie ein tanzender Derwisch und läßt schließlich einen Stein fliegen, der sich anders als ein Diskus selbst nicht dreht. Trotzdem wird dieser Stein einen Drehimpuls L haben und gradlinig weiterfliegen nach \[L = r \cdot p \cdot \sin \theta. \] Jeder gradlinig sich fortbewegende Gegenstand könnte theoretisch auf solch einen „Diskuswerfer“ zurückgehen! Und zweitens:

Betrachten wir nochmals Gl. 156. Beim Impuls \(p = m \cdot v \) können wir nur die Geschwindigkeit v ändern, da die Masse eine Konstante ist, solange wir keine Partikel absprengen wie eine Rakete. Ganz anders sieht es beim Drehimpuls \(L = I \cdot \omega \) aus, bei dem das Drehmoment \(I = m \cdot r^2 \) nach Belieben verändert werden kann. Man denke etwa an die Eiskunstläuferin, bei der sich die
Winkelgeschwindigkeit ω überproportional verändert, wenn sie die Arme ausbreitet bzw. zusammenzieht und dadurch ihren Radius r ändert. Oder anders ausgedrückt: man mißt das Gewicht eines Körpers und hat ein für allemal seine Masse festgestellt, das Drehmoment hängt jedoch zusätzlich von der Form des Körpers ab (und natürlich von der Achse, um die er sich dreht).

Was wir bei einer Eistänzerin beobachten, liegt der Formation von Masse zugrunde, wie sie Reich in Die kosmische Überlagerung (Reich 1951a) beschrieben hat: zwei Orgonenergie-Ströme überlagern sich und bilden eine zum Mittelpunkt hin sich immer schneller windende Spirale.

Und schließlich kehren wir zu Abschnitt VII.2.b. zurück, denn die kosmische Überlagerung, die wir dort anhand der Kraft $F = m \cdot a$ gezeigt haben, läßt sich auch mit ihrer rotatorischen Entsprechung Drehmoment $M = F \cdot r$ aufzeigen. Nehmen wir dazu eine Stange, die wir an einem Ende frei schwebend an einem Faden aufhängen und an der wir am anderen Ende eine drehbare Scheibe befestigen. Wenn wir diesen hängenden Stab waagerecht halten, haben wir es mit zwei Vektoren zu tun, dem Vektor r, die Länge der Stange, die die Scheibe auf ihrer Position hält, und die Gewichtskraft F, die bewirkt, daß die schwere Scheibe am Ende des Stabes zusammen mit dem Stab nach unten fällt, sollten wir loslassen. Beides zusammen ergibt das Drehmoment $M = F \cdot r$. Soweit so gut. Jedoch können wir mit dem in Abschnitt VII.1.d. eingeführten „Kreuzprodukt“ einen dritten Vektor bilden, da die fallende Scheibe von der Stange in eine Kreisbahn gezwungen wird. In diesem Fall ist es das Drehmoment $M = F \times r$. Wobei M bzw. der damit assoziierte Drehimpuls L, aus der Ebene senkrecht hinausweist in Übereinstimmung mit der Drehachse der fallenden Scheibe.

Nun versetzen wir die Scheibe am Ende der Stange in Rotation. Ihre Drehachse ist die Stange. Entsprechend weist der Drehimpuls L, der rotierenden Scheibe in die gleiche Richtung wie die Stange. Der Rest ist simple Vektoraddition: zu jedem denkbaren Zeitabschnitt, in dem der Stab „nach unten fallen will“, tritt zum Vektor L, der Vektor L, hinzu, was im Ergebnis dazu führt, daß der Stab mit der rotierenden Scheibe an seinem Ende statt der Gravitation zu folgen, schweben bleibt und dabei anfängt zu Kreisen („Präzession“). Das ist Überlagerung wie in Abb. 37 und Gl. 148.

Wenn man das weiterdenkt und mit der kosmischen Überlagerung verbindet, hat man hier eine Formel für „Antischwerkraft“ vor sich. Im übrigen kennen wir eine solche Antischwerkraft-Maschine aus unserem Alltag. Das Fahrrad ist nichts anderes als ein Kreisel, der die Schwerkraft überwindet, wenn er sich nur schnell genug dreht. Aber wer denkt beim Fahrradfahren schon an Abb. 37! (Die gleiche Funktion bestimmt den von Reich entwickelten Orgonmotor, wie wir im 3. Abschnitt sehen werden.)
VII.3. Der Orgonenergie-Akkumulator

VII.3.a. Die Kreiselwelle (Schwingungen und Wellen)

Das ganze läßt sich mit der Gleichung \(y(t,0) = A \sin \omega t \) beschreiben: \(y \) steht für die jeweilige Lage des schwingenden Punktes im Auf und Ab in Abhängigkeit von der verflossenen Zeit \(t \) am Punkt 0, \(A \) ist die Amplitude, d.h. wie weit die Auslenkung bei der Schwingung ist (bei einem Musikinstrument die Lautstärke), \(\omega = 2\pi \cdot f \) die Kreisfrequenz. \(\omega \) ist abhängig von den Materialeigenschaften („Federhärte \(k \)“) und der Masse („m“): \(\omega^2 = k/m \). Oder in Worten: Welche Kraft muß ich pro Masseneinheit des Materials aufwenden, um es zu verformen? Wenn das mechanische System besonders rigide ist, „\(k \)“ entsprechend groß, ist die Schwingungsfrequenz hoch. Umgekehrt: je \textit{kleiner} die Masse, desto höher die Schwingungsfrequenz.

Ähnliches läßt sich über die Ausbreitung dieser Störung in einem Medium sagen, d.h. über Wellen: \(y(t,x) = A \sin \omega(t - x/v) \). Wie schnell (\(v \)) sich Wellen in festen Köpern ausbreiten\(^61\) und sich damit die Energie im Raum bewegt, wird durch die Gleichung \(v = \lambda \cdot \omega/2\pi = \lambda \cdot f \) beschrieben, Ausbreitungsgeschwindigkeit der Störung (Wellengeschwindigkeit) gleich Wellenlänge mal Wellenfrequenz.

Die Wellengeschwindigkeit \(v \) hängt von zwei Faktoren ab: 1. wie gut die einzelnen Elemente des Mediums, in dem sich die Störung ausbreitet, miteinander verkoppelt sind und 2. wie Träge die einzelnen Elemente sind, also wie heftig sie sich gegen eine Ortsveränderung wehren. Hat man etwa eine lange Reihe massiver Bleiklötzte, die mit lasch herabhängenden Gummibändern miteinander verbunden sind, wird sich die Störung am ersten Bleiklotz entsprechend langsam bzw. gar nicht auf die restlichen Bleiklüzte fortpflanzen. Bei der optimalst denkbaren Kopplung und null Trägheit (null Masse!) entsprechend schnell. Im vom orgonomischen Potential („Kopplung“) geprägten und masselosen, d.h. „trägheitslosen“ Orgonenergie-Medium ist das die Lichtgeschwindigkeit \(c \). Daß es eine höchste Geschwindigkeit gibt, eben \(c \), hängt demnach mit den einmaligen „Materialeigenschaften“ des Orgons zusammen.

Die translatorische Entsprechung zu \(\omega^2 = k/m \) ist \(v^2 = F/\mu \), wobei \(F \) die „Kopplung“ ist und \(\mu = m/L \) (also Masse pro Längeneinheit) die „Trägheit“

\(^{61}\) Hier soll es nur um Transversalwellen, also Wellen, die sich in Festkörpern ausbreiten, gehen.
beschreibt. Je größer die „Spannung“ \(F \) und je kleiner die „Masse pro Längeneinheit“ \(\mu \) desto schneller bewegen sich die Wellen vorwärts. Zusammen betrachtet haben wir hier die Kreiselwelle vor uns: die Einheit von Kreisbewegung \(\omega \) (Schwingung) und gradliniger Bewegung \(\nu \) (Ausbreitung der Schwingung im Raum).

\[
\text{Rotation (} 2\pi \cdot f \text{)}
\]

\[
\text{Kreiselwelle}
\]

\[
\text{Translation (} \lambda \cdot f \text{)}
\]

\[
\text{Translation (} \lambda \cdot f \text{)}
\]

\[
\text{Rotation (} 2\pi \cdot f \text{)}
\]

VII.3.b. Wellen im Orgonenergie-Medium

Um eine bessere Vorstellung von der Konstante \(k \) (und damit auch von der Konstante \(F \)) zu erhalten, betrachten wir ein besonderes schwingendes mechanisches System: das Pendel. Die Masse müssen wir hier durch das Drehmoment \(I \) ersetzen, \(k \) entspricht dann der Größe \(\kappa = m \cdot g \cdot L \), wobei \(m \) für die Masse des Pendelkörpers steht, \(g \) für die Erdbeschleunigung und \(L \) für die Länge des Pendels. Das ergibt \(\omega^2 = \kappa / I \). Bis auf das \(g \) werden alle Größen in \(k \) durch das \(I = m \cdot L^2 \) aufgehoben. Angesichts von \(\omega^2 = k / m \) tritt dann an die Stelle des \(k \) das \(g \) und an die Stelle des \(m \) die Länge \(L \): \(\omega^2 = g / L \). Es sei an Reichs bereits oben erwähnte zentrale Gleichung erinnert:

\[
m \int L \quad \text{Gl. 159}
\]

Wir wissen, daß das Pendel unabhängig von der Masse schwingt; die Schwingung nur von der Erdbeschleunigung \(g \) und seiner Länge \(L \) abhängig ist. Je größer die Erdbeschleunigung \(g \) und je kürzer die Länge des Pendels \(L \), desto schneller pendelt es.

Aber was bedeutet das für die kosmische Orgonenergie? Hier bestimmt eine Größe, die für „Zusammenhalt“ steht (je größer \(g \), desto schwerer kann man den Planeten verlassen!) auf proportionale und eine räumliche Größe \(L \) auf umgekehrt proportionale Weise die Mediumeigenschaften („Schwingungseigenschaften“) des Orgons. Wir sprechen vom orgonomischen Potential, das die Kraft und damit die Beschleunigung, die „Kohäsion“, erhöht, Entfernungen (Längen) schrumpfen läßt und damit für die Gravitation verantwortlich ist (vgl. Gl. 116):
Und wir sprechen vom mechanischen Potential (vgl. 114):

\[
\begin{align*}
L \xrightarrow{\text{t}} & \quad \text{Gl. 160} \\
t \xrightarrow{\text{L}} & \quad \text{Gl. 161}
\end{align*}
\]

Wenn man die Saite einer Gitarre anspannt, wandelt sich Länge in Zeit (Gl. 160), entspannt man sie, Zeit in Länge (Gl. 161). Das ist unmittelbar evident, denn bei Entspannung wird der Ton immer tiefer bis der tiefst mögliche Ton erreicht ist und die Saite schlaff herabhängt, d.h. nur noch Struktur (L), „nur noch tote Materie“ ist.

Umgekehrt können wir die Saite beliebig anziehen (natürlich solange sie nicht reißt). An die Stelle von Struktur tritt zunehmend Energie („Vibration“). Das wird bei der Thermodynamik („die Oszillation der kleinsten Teilchen“) deutlich, wo es zwar einen tiefsten Punkt gibt, aber keinen höchsten Punkt. Theoretisch sind unendlich hohe Temperaturen möglich, bis wir bei der Energiedichte des hypothetischen „Urknalls“ angelangt sind: reine Energie.\(^{62}\)

Den Gedankengang dieses Abschnittes kann man wie folgt orgonometrisch zusammenfassen:

\[
\begin{align*}
\omega^2 = \frac{k}{m} & \quad \omega^2 = \frac{\kappa}{I} \\
\omega^2 = g/L & \quad \omega^2 = g/L \\
(\text{L} \xrightarrow{\text{t}}) & \quad (\text{t} \xrightarrow{\text{L}}) \\
\end{align*}
\]

Gl. 162

VII.3.c. Von der Thermodynamik zum Orgonenergie-Akkumulator

Dem kalorischen Fluß stehen drei Möglichkeiten offen: Die Fortbewegung durch Wellen, ohne daß sich Materie von A nach B bewegt (Wärmestrahlung) und die Konvektion, bei der beispielsweise warme Luft aufsteigt und kalte Luft absinkt, weil

\(^{62}\) Beim Übergang Gl. 160 wird Orgonenergie freigesetzt, beim Übergang Gl. 161 wird sie gebunden (Harman 2004).
die erstere weniger dicht und damit leichter ist als die letztere. Wenn es sich um einen festen Aggregatzustand handelt, sich die Moleküle also nicht frei bewegen können, kommt es stattdessen zur Wärmeleitung.

Das ganze ist eine Entsprechung der von Reich in Die kosmische Überlagerung (Reich 1951a) beschriebenen Überlagerung von Orgonenergie-Strömen. Durch Überlagerung gehen sie von einer translatorischen Bewegung in eine rotatorische über, aus der schließlich Materie resultiert.

Die Gleichung \(\frac{3}{2} k \cdot T = m \cdot \frac{v^2}{2} \) besagt, daß die Temperatur \(T \) nichts anderes ist als die kinetische Energie der Moleküle \((m \cdot \frac{v^2}{2})\): Temperatur gleich (molekulare) Bewegung! Die 3 taucht in dieser Formulierung auf, weil wir es mit dem dreidimensionalen Raum zu tun haben und das „\(k \)“ ist die sogenannte Boltzmann-Konstante, die uns hier nicht weiter interessieren soll, außer daß sie dafür sorgt, daß auf beiden Seiten der Gleichung Dimensionen der Größe Energie stehen.

Betrachten wir die Sache bei \(T = 0 \) K. Alles erstarrt, keinerlei Bewegung mehr. Das kann man sich damit vergegenwärtigen, daß jedes Molekül stabil in einer Kuhle (einem „Potential“) verharrt. Mit steigender Temperatur fängt es an immer heftiger zu schwingen, bis es schließlich aus dem „Potentialtopf“ hinaus schwingt, d.h. es zu einem „Phasenwechsel“ kommt.63

Aus diesem Grund macht der kalorische Fluß Sprünge, deren funktionelle Bedeutung gleich deutlich werden wird. Wenn ich etwa Eis erhitze, dann wächst das T des Eises

63 Natürlich darf man das Bild nicht wörtlich nehmen, da sich die Teilchen wild in alle drei Richtungen des Raumes bewegen!
gleichförmig in Abhängigkeit von der zugeführten Wärme. Sobald sich aber das erste Wasser bei 0 °C bildet, wird T nicht größer, obwohl ich von außen her weiter den kalorischen Fluß ins System leite. Es handelt sich um einen sogenannten Phasenübergang vom einen Aggregatzustand (Eis) zum anderen (Flüssigkeit). Das gleiche passiert bei 100 °C, wenn das Wasser verdampft.

Wenn wir den besagten Kochtopf (unsere primitive Dampfmaschine) auf den Herd stellen und langsam erhitzen, bis sich der Deckel des Kochtopfs plötzlich hebt, haben wir das mechanische Äquivalent eines orgonotischen Geschehens vor uns, das erstmals Robert A. Harman klar formuliert hat. Übrigens ereignet sich ähnliches bei der Verzögerung des Temperaturanstiegs in den Phasenübergängen!

Das kann man im Zusammenhang mit den obigen Ausführungen in folgender Gleichung zusammenfassen, in der Ro für den rotatorischen Anteil der Kreiselwelle steht und Tr für den translatorischen:

\[
\begin{array}{c}
\left\{ \begin{array}{c}
Tr \\
Ro \\
Tr
\end{array} \right.
\end{array}
\]

Gl. 163

VII.3.d. Von der Elektrostatik zum Orgonenergie-Akkumulator

Die Kette Gl. 163 ließe sich beliebig verlängern, wäre da nicht ein kleiner aber entscheidender Schönheitsfehler, der funktionell dem Faktor entspricht, dem wir in unseren bisherigen Betrachtungen mit Bedacht stets ausgewichen sind, obwohl er von zentraler Bedeutung ist: die Reibung!
Das Zweite Thermodynamische Gesetz kommt schlichtweg dadurch zum Ausdruck, daß sich die Wärme Q nicht vollständig in die Arbeit W umsetzt, allein schon dadurch, daß ein Teil der Wärme unwiederbringlich in die Umwelt abstrahlt. Es ist genau wie bei einem schwingenden Pendel, wo sich theoretisch kinetische und potentielle Energie in alle Ewigkeit ineinander umwandeln. Tatsächlich tritt aber unvermeidbar Reibung auf, die sich als Wärme kundgibt: Energie, die dem System unwiederbringlich entzogen wird.

Reich hatte den Anspruch, mit dem Orgoneneergie-Akkumulator eine Vorrichtung gebaut zu haben, die dem von Carnot entdeckten Gesetz widerspricht: aus der kälteren Umgebung fließt Wärme in eine Art „Wärmeakkumulator“ hinein, ohne daß ein „Kompressor“ dazwischengeschaltet wäre, der die Arbeit leistet, damit Wärme von einem kälteren Reservoir (dem Labor) zu einem wärmeren Reservoir (dem Inneren des Akkumulators) fließt. Oder genereller ausgedrückt: \(-Q/T_L + Q/T_A < 0\). Das kältere Labor \((T_L)\) verliert Wärme \((-Q)\), während der wärmere Akkumulator \((T_A)\) die gleiche Wärme hinzugewinnt \((+Q)\).

Da \(Q/T = S\) die Entropie ist und diese für das Universum nicht abnehmen darf, kann es keinen „natürlichen“ Vorgang geben, in dem S am Ende kleiner als 0 ist. S kann nur mittels eines durch Arbeit erzwungenen Vorgangs abnehmen, d.h. an anderer Stelle nimmt S entsprechend um so mehr zu.

Da Einstein bei seinem berühmten Gespräch mit Reich 1941 beim besten Willen keinen solchen „Arbeitsvorgang“ bei der physikalisch toten Materialanordnung „Orgonakkumulator“ entdecken konnte, sprach er von einer „Bombe für die Physik“. Schließlich meinte er doch eine entsprechende Maschine entdeckt zu haben: die Heizung seines Hauses, die für die Konvektionsströme sorgte, die die Arbeit verrichteten, um den Akkumulator nur scheinbar gegen das Zweite Thermodynamische Gesetz aufzuheizen. Reich konnte mit weiteren Experimenten diesen Einwand überzeugend entkräften (Reich 1953b).

Es blieb die Frage: Wie konnte der physikalisch „tote“ Akkumulator \(-Q/T_L + Q/T_A < 0\) leisten?

zwischen ihnen berechnet man mit Coulombs Gesetz: \(F = \frac{q_1 \cdot q_2}{4\pi \varepsilon_0} \cdot \frac{1}{r^2} \).

\(q_1 \) und \(q_2 \) sind die beiden sich anziehenden oder abstoßenden Ladungen, \(r \) ihr Abstand und \(\varepsilon_0 \) eine Konstante, die die Stärke des elektrostatischen Feldes angibt, das für diese Kraft verantwortlich ist. (\(4\pi \) taucht nur deshalb auf, weil \(\varepsilon_0 \) ursprünglich entsprechend definiert wurde. Siehe dazu Kapitel IV.2.e.)

Interessant wird das ganze bei der „Polarisation“. Man streiche sich einen „harzartigen“ Kamm durch das Haar. Hält man den dadurch elektrostatisch negativ aufgeladenen Kamm gegen ein Stück Papier, wird das elektrisch neutrale Papier an ihm festkleben. Das erklärt sich damit, daß die elektrisch positiven Ladungen im „polarisierbaren“ Papier vom Kamm angezogen werden, die elektrisch negativen abgestoßen. Dort wo sich Kamm und Papier begegnen, haben wir also einen „harzartigen“ und einen „glasartigen“ Bereich, die sich gegenseitig anziehen.

Entscheidend ist nun das nächste Experiment: Man hält den aufgeladenen Kamm an eine kleine metallische Hohlkugel, die an einem Faden hängt. Zunächst wird die Hohlkugel zum Kamm hingezogen, berührt ihn, stößt sich aber danach sofort wieder von ihm ab. Das liegt daran, daß die Ladungen, im Gegensatz zum Papier, im Metall frei beweglich sind. Wenn sich der Kamm der Metallkugel annähert, zieht er alle positiven Ladungen in seine Richtung und damit auch die Metallkugel. Kommt es aber daraufhin zur Berührung zwischen Kamm und Metallkugel, fließen negative Ladungen vom Kamm auf die Metallkugel über, die nun in ihrer Gesamtheit nicht mehr elektrisch neutral ist, sondern ebenfalls elektrisch negativ aufgeladen ist. Entsprechend stoßen sich Kamm und Metallkugel fürdernhin permanent ab.

Wir haben also nicht nur zwei aus elektrostatischer Sicht wichtige Materialien, sondern derer vier: glasartige, harzartige, neutrale (darunter „polarisierbare“) und metallene. Die ersteren sind Isolatoren, während Metall ein Leiter ist. Isolatoren ziehen sich an oder stoßen sich ab, je nach ihrer Ladung. Mit Leitern kommt jedoch Dynamik ins Spiel: ein Leiter zieht zunächst einen elektrisch geladenen Isolator an und stößt ihn dann sofort wieder ab.

Diese Beobachtungen sind sowohl Grundlage der gesamten Physik jenseits der Dampfmaschine als auch Grundlage der Organophysik.64

\begin{center}
\begin{tikzpicture}
 \node (orgontechnik) at (0,0) {Orgontechnik};
 \node (elektrotechnik) at (0,-1.5) {Elektrotechnik};
 \node (isolateure) at (-2,0) {Unterschied zwischen Isolatoren und Leitern};
 \node (gleichung) at (1.5,0) {Gl. 164};
 \draw[->] (orgontechnik) -- (isolateure);
 \draw[->] (isolateure) -- (elektrotechnik);
\end{tikzpicture}
\end{center}

Reich schrieb dazu:

Orgon durchdringt den gesamten Raum einschließlich aller festen Materie. Es durchdringt eine Betonwand ebenso wie eine Stahlwand. Der Unterschied liegt im Tempo der Durchdringung. Beton nimmt die Orgonenergie langsam auf und gibt sie langsam wieder ab; Stahl zieht Orgonenergie stark und schnell an, aber er reflektiert sie auch sofort, da Metall anscheinend unfähig ist, Orgonenergie zu halten. Diese Tatsache mag einige Bedeutung bei der Funktion schnellen Energieflusses durch Metalldrähte haben. (Reich 1949a, S. 156)

\textbf{VII.3.e. Elektrotechnik}

Bevor wir auf die Frage vom Ende des letzten Abschnitts eingehen, wollen wir uns zunächst die Orgonometrie der bisherigen Überlegungen anschauen:

\[R = \frac{V}{I} \]

Er hängt von der Länge des Metalldrahtes, durch den der Strom fließt,

seinem Durchmesser und seiner materialspezifischen Leitfähigkeit ab. Interessant ist
der Vergleich der orgonometrischen Dimensionen von V (L/t) und R (t/L) (vgl. Kapitel
IV.2.h.):

\[
\begin{align*}
L/t & \quad \longrightarrow \quad t/L \\
\end{align*}
\]

Gl. 165

Dabei ist an eine Überlegung des Biophysikers Adolph Smith zu denken, der die
Frage aufwarf, ob „elektrischer Strom“ nicht einfach Orgon sei, das durch Drähte
fließt (Haldane 2014, S. 43). Dann könnte man bei Gl. 165 wirklich an Orgonenergie
denken, die durch den Organismus fließt (die übergreifende „psychische Funktion“)
und durch die Gewebe einen unterschiedlichen Widerstand erfährt (die lokale
„somatische Funktion“). Ein weiteres Beispiel für die Lebensenergie (Orgon) in der
Schulphysik.

Das Wechselspiel zwischen diesen beiden antagonistischen Funktionen ist die
Grundlage der gesamten Elektrotechnik. Das einfachste Beispiel für, wenn man so
will, „Elektronik“ ist die Glühbirne: der Faden widersetzt sich dem Stromfluß und fängt
an zu glühen.

Die rechte Funktion von Gl. 165 steht für den (ideal)nen Isolator, die linke Funktion für
den (idealen) Leiter. Es ist offensichtlich, daß das durch die Funktionsgleichung
implizierte CFP etwas mit orgonotischer Pulsation zu tun haben muß: Bewegung in
die eine Richtung (Expansion) \(\rightarrow\) Widerstand gegen diese Bewegung \(\rightarrow\) Bewegung
in die andere Richtung (Kontraktion) \(\rightarrow\) Widerstand gegen diese Bewegung, etc.

Der Isolator verkörpert den Widerstand gegen Bewegung („t/L“), der Leiter die
Bewegung selbst („L/t“). Pulsation kann nur auftreten, wenn beide Elemente vereinigt
sind. Bei gleichnamig geladenen Isolatoren kommt es nur zur Anziehung, bei
ungleichnamig geladenen Isolatoren nur zur Abstoßung:

\[
\begin{align*}
\text{harzartig} & \quad \longrightarrow \quad \text{glasartig} \\
\text{harzartig} & \quad \leftarrow \quad \text{harzartig} \\
\end{align*}
\]

Gl. 166

Gl. 167

Erst wenn zusätzlich metallische Leiter ins Spiel kommen, ist Pulsation und damit
Dynamik wieder möglich:

Während für die Gravitation Newtons Gleichung $F = m \cdot g$ gilt, die die Erdbeschleunigung g in unmittelbarer Nähe der Erde beschreibt, haben wir in der Elektrik den Ausdruck: $F = q \cdot E$. Das elektrische Feld E übt auf die Ladung q eine Kraft F aus. Dies wird etwa sichtbar, wenn wir einen Leiter ins elektrische Feld eintauchen. Die freien Elektronen werden zum positiven Pol des Feldes hingezogen und hinterlassen am anderen Ende des Leiters gegenüber dem negativen Pol des Feldes entsprechend einen positiv geladenen Bereich („Influenz“). Die beiden Felder (das von außen angelegte Feld und das dadurch im Inneren des Leiters induzierte Feld) heben sich genau auf. Deshalb ist, wie bereits erwähnt, in einem Leiter die elektrische Feldstärke E stets gleich Null.

Ein Plattenkondensator besteht aus zwei Leiterplatten, die durch einen Isolator voneinander getrennt sind. Dieser Isolator kann auch das Vakuum sein. Die Feldstärke E zwischen den beiden Platten wird durch die Gleichung $E = \frac{V}{d}$ beschrieben, wobei V die Spannung ist und d die Distanz zwischen den beiden Platten. Führen wir zwei aneinander backende Leiterplatten senkrecht ins Feld ein und trennen wir die beiden Platten, die jeweils die Fläche A haben. In ihnen kommt
es durch Influenz zur Ladungstrennung, die so hervorgerufene meßbare Ladung \(q \) entspricht der Feldstärke: \(D = \frac{q}{A} = \varepsilon_0 \varepsilon_r \cdot E \). D ist die „dielektrische Verschiebung“, \(\varepsilon_0 \) die universelle elektrische Feldkonstante und \(\varepsilon_r \) die Permittivitätszahl, die die Durchlässigkeit des jeweiligen Isolators für elektrische Felder beschreibt. Die Kapazität \(C \), d.h. die „Speicherkraft“ eines Plattenkondensators ist entsprechend: \(C = \varepsilon_0 \varepsilon_r \cdot \frac{A}{d} \). Im Vakuum ist \(\varepsilon_0 = 1 \), ein Wert, der sich durch entsprechende Isolatoren durch Multiplikation mit \(\varepsilon_r \) praktisch beliebig vergrößern läßt. Die Nähe zur Funktionsweise des Orgonenergie-Akkumulators ist evident. Je größer die Kapazität \(C \) desto größer das mögliche elektrische Feld.

Ein Kondensator dient dazu, Ladung \(q \) und damit potentielle Energie \(U \) zu speichern:
\[
U = V \cdot q
\]
(\(V \) steht für das elektrische Potential, die Spannung). Von den orgonometrischen Dimensionen her entspricht dies Reichs Gleichung für die kosmische Energie:
\[
\varepsilon = W \cdot p
\]
Gl. 169

Siehe dazu Gl. 35 und Gl. 36.

Von der Elektrostatik zur Elektrodynamik kommen wir, wenn wir die beiden Kondensatorplatten mit einem Draht verbinden. Wir haben es sozusagen mit einem „permanenten Kurzschluß“ zu tun. Reguliert man den mit „Widerständen“ und weiteren Kondensatoren, hat man Elektronik vor sich. Der Draht macht das kontinuierlich, was oben das zwischen den Kondensatorplatten hin und her schwingende Pendel geleistet hat. Mit dem entscheidenden Unterschied, daß das Pendel die Kreiselwelle aus Gl. 169 sichtbar machte!

Damit das ganze dauerhaft funktioniert, muß der Kondensator natürlich stets von neuem aufgeladen werden. Hier kommt wieder der von Harman beschriebene Mechanismus zum Tragen, der in Gl. 163 beschrieben wurde. Man denke nur an den Fahrraddynamo (ein Wasserkraftwerk oder Atomkraftwerk funktioniert auch nicht anders!), wo das ständige „Mahlen“ das Stromnetz versorgt: Rotation (Aufladung) \(\rightarrow \) Translation (Entladung). In Batterien ist es die chemische Energie, die für die Aufladung sorgt.

VII.3.f. Orgontechnik

Im rechten Winkel um einen stromdurchflossenen Leiter bildet sich ein magnetisches Feld. Alles, was wir über das elektrische Feld gesagt haben, gilt so ähnlich auch für das magnetische Feld (\(\mathbf{B} = \mu_0 \mu_r \mathbf{H} \)). Der entscheidende Unterschied ist, daß elektrische Feldlinien einen Anfang und ein Ende haben, während magnetische Feldlinien in sich geschlossen sind. „Elektromagnetismus“ ist entsprechend.
unmittelbarer Ausdruck der orgonotischen Kreiselwelle mit ihren beiden Komponenten Vorwärtsbewegung und Kreisbewegung.

Die magnetische „Lorentz-Kraft“ wird mit folgender Gleichung beschrieben:
\[F = q \left(\vec{v} \times \vec{B} \right). \]
Die Kraft ist gleich der Ladung \(q \) mal dem elektrischen Feld \(\vec{E} \) plus dem Kreuzprodukt aus der Geschwindigkeit \(\vec{v} \) der Ladung und der magnetischen Flußdichte. Bewegt sich die Ladung parallel zum magnetischen Feld \((\vec{v}_p) \), tritt keine Lorentz-Kraft auf. Bewegt sie sich senkrecht zu dem Feldlinien \((\vec{v}_s) \), wird sie von dieser Kraft in eine Kreisbewegung gezwungen. Überall zwischen diesen beiden Extremen, also wenn die Ladung „schräg“ ins Magnetfeld eindringt, wird sie in eine spiralförmige Bahn gezwungen \((\vec{v}) \).

Es handelt sich hier nicht einfach nur um Vektoraddition, sondern um Überlagerung:

\[\vec{v}_p \]
\[\vec{v}_s \]
\[\vec{v} \]

Betrachtet man die schraubenförmige Bewegungsspuren von Teilchen in Blasenkammern, die so fatal an die orgonotische Kreiselwelle erinnern, wird jedem jeder sagen, daß das selbstverständlich nichts mit der orgonotischen Kreiselwelle zu tun habe, sondern daß das magnetische Feld geladene Teilchen in diese Spiralmuster hineinzwingt. Tatsächlich haben wir hier aber im Kleinformat genau das gleiche vor uns, was wir in Abschnitt VII.2. über die angeblich rein mechanische Bewegung der Körper gesagt haben: die kosmische Überlagerung.

Darauf beruht sowohl das elektromotorische Prinzip (auf einen stromdurchflossenen Leiter wirkt im Magnetfeld eine Kraft) als auch das Generatorprinzip (wie im Fahrraddynamo wird umgekehrt der Leiter durch das Magnetfeld bewegt und dargestellt ein elektrischer Strom induziert).

Reich hat das in folgender Gleichung beschrieben (Reich 1952):

\[\text{Dynamo} \leftarrow \rightarrow \text{Motor} \]

Er hat den Magnetismus (ähnlich wie die elektrostatische Ladung) weitgehend mit der Orgonenergie gleichgesetzt. Er fand heraus, daß sich die orgonotische Kraft zur elektrischen genauso verhält, wie die magnetische Kraft zur elektrischen (Reich 1944b). Nun ist es nicht so, daß Magnetismus und Orgonenergie einfach identisch sind, vielmehr kann die Orgonenergie die Funktion des Magnetismus übernehmen und so den Elektromotor auf ganz neue Art und Weise antreiben, nämlich dargestellt,
daß sich der „Elektromotor“ so bewegt, wie sich die kosmische Orgonenergie bewegt, d.h. entsprechend den besagten geladenen Teilchen in der Blasenkammer – „orgonotisch-kreiselwellenartig“. Zeitzeugen haben es wie folgt beschrieben:

Der kleine in einen „Orgonmotor“ umfunctionierte Elektromotor wurde von Reich mit einer so geringen Strommenge gespeist, daß diese nicht ausreichte, den Motor in Rotation zu versetzen. Wenn er jedoch zusätzlich mit dem Orgonenergie-Akkumulator verbunden wurde, begann sich der Motor zu drehen. Charakteristischerweise war seine Bewegung vom Wetter abhängig: er drehte sich rasch bei klarem, trockenem Wetter, langsam bei schlechtem, feuchtem Wetter. Mit Orgonenergie war der Motor fast geräuschlos und bewegte sich viel glatter und schneller als mit Elektrizität. Gleichzeitig aber auch erratischer, d.h. die Drehung wurde unvorhersehbar langsamer oder schneller, außerdem wechselte sie scheinbar ohne Ruck unvermittelt die Richtung (DeMeo 2002b).

VII.4. Kosmogonie

VII.4.a. Gravitation im Funktionsbereich „Bewegung“

1945 verfaßte Reich das Manuskript „Das orgonomische Pendelgesetz“ (Reich 1957b). Hier spricht er davon, daß zwischen der oben skizzierten Rotation der irdischen Orgonenergie-Hülle einerseits und der Fallbeschleunigung g andererseits ein enger Zusammenhang besteht. Indem Reich die Gewichtskraft mit der Kraft dieser Rotation gleichsetzte und aus dieser Gleichung die Masse eliminierte, gelangte er zu einer neuen Ausdrucksweise für die Größe g, bei der die „geradlinige“ Fallbeschleunigung durch eine „Kreisfunktion“ (Reich) ersetzt wurde.

In erster Linie ist dieses Manuskript jedoch Pendelversuchen gewidmet, die Reich im Oktober 1944 durchführte. Diese Versuche mit einem Pendel, bei dem ja durch den Pendelfaden der gradlinige freie Fall in eine halbkreisförmige Bahn umgelenkt wird, führten Reich zu einer weiteren Gleichung, in der g durch eine „Kreisfunktion“ ausgedrückt wurde.
Januar 1948 ließ Reich eine orgonometrische Gleichung notariell beglaubigen, bei der er diese beiden Gravitationsformeln als Funktionen darstellt, die in der kreiselwellenartigen Bewegung der kosmischen Orgonenergie ihr CFP haben.

Durch sein Pendelexperiment hat Reich die grundlegende orgonometrische Transformation Gl. 159 entdeckt. Er hatte die Atommassen 1, 4 und 16 durch entsprechende Zentimeter des Pendelfadens ersetzt.

Die umgekehrte Transformation können wir zumindest erahnen, wenn wir an einem Bindfaden eine Masse befestigen und diese im Kreis herumschleudern (vgl. 159).

\[L \int m \quad \text{Gl. 172} \]

Bleibt, wie bei der Rotation der Galaxien, die Winkelgeschwindigkeit \(\omega \) konstant, wächst die Zentrifugalkraft \(Z (= \text{künstliche Schwerkraft}) \), die wir in der Hand spüren, proportional mit der Länge \(L \) des Fadens \((Z = m \cdot \omega^2 \cdot L) \). In den Kategorien einer Federwaage ist die mit \(L \) wachsende Schwerkraft funktionell identisch mit zunehmender Masse.

1951 brachte Reich das Buch Die kosmische Überlagerung (Reich 1951a) heraus, wo er darstellt, wie sich aufgrund des organomischen Potentials zwei Orgonenergie-Einheiten gegenseitig anziehen, bis es zur Überlagerung kommt. Aus solchen Prozessen soll sich, Reich zufolge, die erste Masseneinheit entwickelt haben.

Mit dieser Entstehung der Masse aus der massefreien Orgonenergie haben wir auch die Genese der Gravitation vor uns. Genauso wie vorher die beiden Orgonenergie-Einheiten sich durch das organomische Potential anzogen, kommt es später auf ähnlichem Wege zur Massenanziehung. Dies hat Reich mit folgender Skizze verdeutlicht:
Was damit gemeint ist, kann man sich am besten an den Planetenbewegungen, in Abb. 39 an der Drehung des Mondes um die Erde, vergegenwärtigen.

Das ist, was Reich „Gravitations-Überlagerung“ genannt hat. Während Newton vom berühmten Apfel ausging, der auf das Zentrum der Erde zufällt, und dies dann auf den Mond übertragen hat, der ebenfalls zum Zentrum der Erde falle, wenn er nicht von der Zentrifugalkraft in einen Orbit gezwungen würde, betrachtet Reich das Problem genau umgekehrt. Die Flugbahnen von Mond und Erde überlagern sich ständig, was, Reich zufolge, auch für den Apfel zuträfe, wenn dessen Flugbahn nicht je von der Erdoberfläche unterbrochen würde.

Träg Masse, die wir experimentell über den Widerstand gegen Beschleunigung bestimmen, d.h. das Beharrungsvermögen („Trägheit“) des gegebenen Körpers, geht auf die Überlagerung von Orgonenergie-Strömen zurück, d.h. auf das Abbremsen der freien Bewegung der Orgonenergie (Reich 1951, S. 33f).

Reichs Konzept der Entwicklung der _gravitativen Massen_, die durch ihr Gewicht bestimmt wird, ähnelt sehr dem von DesCartes’ mit seinem dynamischen Wirbelmodell der Schwerkraft, das zwar von Newtons statischer Theorie der Schwerkraft abgelöst wurde, aber noch im 19. Jahrhundert im Schwange war, wie z.B. diese Stelle aus Nietzsches Notizbuch zeigt:

Die Schwere vielleicht aus dem bewegten „Äther“ zu erklären, der um ein ungeheurees Gestirn, mit dem gesamten Sonnensystem rotiert. (Nietzsche 1988, S. 458)
Newton's theory is based (at least implicitly) on the idea of concentration differences of the "aether" in space, which are balanced by the mechanical potential, while the "organomically-cartesian" theory depends on the superposition on the organomeric potential (Reich 1949a, p. 153f).

Newton's theory does not explain why the inert and heavy mass is the same. This was the starting point of Einstein's general relativity theory and was explained by it. However, the explanation of gravity through the "curved" space-time functioned only on the basis of the circular function, as gravity is the result of the superposition of those organonomic energy-flows, from which the inert masses originally emerged (Reich 1951a, p. 121).

The third type of mass, the attracting mass, which we determine through the calculations of celestial mechanics, is fictitious (Reich 1951a, p. 120), as the Sun does not attract the planets, but all bodies in the solar system, and all other solar systems, move in the same galactic organonomic energy-stream, where their reciprocal movements are harmonically coordinated (Reich 1951a, p. 38). This is of course in contradiction to Cavendish's 1798 experimentally determined value of Newton's gravitational constant (π), with which one can measure the weight of the planet Earth.

As already mentioned, Reich discovered with a "classical" instrument, the mathematical pendulum, which swings independently of the mass of the pendulum body and yet measures the gravity strength (g), a way to eliminate g and express it, mathematically "a circular function" ("Kr" from Kreisfunktion, π is by Reich for example "2rKr"). See also Eq. 92 (Reich 1957b, p. 136-141).

Eq. 90 is dimensional only partly correct, but nonetheless the Planck constant h has the same dimension as the angular momentum, and Reich lays out a "complete functional mapping" of "Kepler's macrocosmic and Planck's quantum law" (Reich 1957b, p. 133). Kepler's "macrocosmic law" was, for example, expressed (Reich 1957b, p. 134):

\[\xi = \int \frac{d^3}{t^2} \]

It is decisive that Newton derived his mass equation of the gravitation from this mass-free equation and built the whole further physics on it. So mass and gravitation are only secondary functions of Kepler's vis
animalis, „die den Himmel ebenso regiert, wie den lebendigen Organismus“ (Reich 1951a, S. 13). Als Reich über die Verbindung zwischen der Orgasmusformel und dem Pendel-Experiment befragt wurde, antwortete er:

Die ganze Sache ist eine Symphonie, eine wunderbare Symphonie. (Sharaf 1968, S. 221)

VII.4.b. Gravitation im Funktionsbereich „Erstrahlung“

Wenn man das aus Sicht der Newtonschen Theorie betrachtet, so sieht das so aus, als sei die Gravitations-„Konstante“ \(f \) eine Variable, die mit größeren Entfernungen stärker wird (in Größenordnungen einer Galaxie), was bedeutet, daß hier die schwere und träge Masse nicht mehr identisch sind und die schwere Masse überwiegt (Milgrom M 1983). In galaktischen Maßstäben wird demnach die Gravitation von der kosmischen Überlagerung bestimmt, wie Reich es beschrieben hat, während auf kleinerer Ebene (Sonnensystem, Erde) die „tote“ träge Masse die Gravitation beherrscht, wie Newton es beschrieben hat.

Ich habe im obigen Abschnitt erläutert, wie Masse aus der Überlagerung von Orgonenergie-Strömen entsteht. Es kommt dabei zur folgenden organometrischen Transformation:

\[
\begin{align*}
\text{Orgonenergie} & \quad \rightarrow \quad \text{Masse} \\
\text{Gl. 174}
\end{align*}
\]

Auf der Ebene der Planeten, d.h. in einem Bereich, der von der durch galaktische Überlagerung entstandenen Masse bestimmt wird (im Vergleich dazu ist die Ebene der Galaxien praktisch „massefrei“!), kommt die Gravitation im Sinne von „Massenanziehung“ zum tragen.

Da Masse extrem konzentrierte Orgonenergie ist, reicht schon ein minimales „Zerstrahlen“ von Masse, um große Mengen Orgonenergie freizusetzen, was zu einer entsprechenden organotischen Anziehung zwischen den Massen führt. Dies äußert sich als „Schwer-Kraft“. Da die Quelle dieser gravitationserzeugenden Orgonenergie Masse ist, ist die „Massenanziehung“, Harman zufolge, „mechanisch und präzise“, wie von Newton beschrieben:

\[\text{Masse} \rightarrow \text{Orgonenergie} \]

Beim Übergang Gl. 161 wird Orgonenergie gebunden, beim Übergang Gl. 160 wird sie freigesetzt (Harman 2004), entsprechend Gl. 174 und Gl. 175.

Die andere Gravitation, die Newtonsche „Massenanziehung“, beruht auf der Umwandlung von Masse in Orgonenergie (Gl. 175), wie sie von Newton mit seiner Fernwirkungstheorie erfaßt wurde. Raum wird zugunsten von Zeit negiert (mechanische Massenanziehung, „Raumlosigkeit“), gemäß Gl. 160.

VII.4.c. Quantenmechanik

Vor der von Max Planck angestoßenen Entwicklung galt, daß die Welt bis in ihre kleinsten Teilchen hinein ein Kontinuum darstellt, wenn man so will „analog“ ist: jede Bewegung (bzw. jeder Impuls \(p = m \cdot v \)) zeitigte eine entsprechende Wirkung. Jeder Zeitkoordinate entsprach eine Raumkoordinate (vgl. Gl. 109):

\[t \rightarrow L \]

Die Welt der Quantenmechanik ist jedoch ein Bereich, der prinzipielle Unbestimmtheit beinhaltet, wo also Gl. 176 in Frage gestellt ist, wie Heisenberg 1927 nachgewiesen hat. Er erkannte, daß man in der Quantenwelt zwar einzeln Lage und
Geschwindigkeit, bzw. den Impuls, bestimmen kann, daß dies aber nie gleichzeitig möglich ist. Je genauer der Impuls gemessen wird, desto ungenauer wird die Ortsangabe und umgekehrt. Es ist dementsprechend physikalisch sinnlos einem Quantenobjekt gemäß Gl. 176 gleichzeitig Impuls und Lage zuordnen zu wollen. Das ist gleichbedeutend mit der Aussage, daß es keinen „Nullpunkt“ gibt. Entzieht man einem Quantenobjekt jede denkbare Energie, so daß es nach klassischer Vorstellung „fixiert“ ist, wird es sich noch immer bewegen (bzw. einen Impuls haben), so als würde es „zittern“. Der Vergleich hinkt mehr als gewaltig, wie wir gleich sehen werden, aber man kann sich die Quantenteilchen in etwa wie Insekten vorstellen, die in einem Schwarm so wild und chaotisch durcheinanderfliegen, daß es unmöglich ist, die einzelnen Insekten zu verfolgen. Sie sind sozusagen „im Raum verschmiert“.

Einstein hat all sein Genie aufgewendet, um die Allgemeingültigkeit von Gl. 176 zu retten, d.h. zu zeigen, daß für ein Mikroobjekt Ort und Impuls doch gleichzeitig existieren, obwohl wir sie nicht gleichzeitig messen können, weil unsere Ortsbestimmung den Impuls „verschmiert“ und umgekehrt. Der Gipfelpunkt von Einsteins Bemühungen stellt das „EPR-Paradoxon“ dar.

Dabei geht EPR davon aus, daß es zwischen S₁ und S₂ keine augenblickliche Fernwirkung geben könne, d.h. sie können sich nicht momentan beeinflussen. Könnte man aber eine solche Beeinflussung, bzw. „Nichtlokalität“ nachweisen, würde sich EPR gegen seinen eigenen Ursprung, Einstein, wenden und die Vollständigkeit der Quantenmechanik abschließend nachweisen. Das bedeutet, daß die „Verschmiertheit“ der Quantenobjekte intrinsisch und kein bloßes Artefakt aufgrund unserer groben Meßinstrumente ist.

65 Für Einstein war Newtons Fernwirkungstheorie der Gravitation ein Fremdkörper in der Physik, da es keine Teilchen und kein Feld gibt, das den Kontakt zwischen den sich wechselseitig anziehenden Massen vermittelt. Außerdem wiedersprach die von Newton (aus zwingendem Grund!) geforderte instantane Wechselwirkung der Speziellen

www.orgonomie.net

Das zeigt der Doppelspaltversuch beim Verhalten mehrerer einzeln durch den Versuchsaufbau fliegender Quantenobjekte. Dabei sehen wir, daß sich jedes einzelne Quantenobjekt wie eine kontinuierliche mit sich selbst interferierende Welle verhält, die durch beide Spalten gleichzeitig fliegt. Das gelingt ihm, weil es „im Raum verschmiert ist“. Prüfen wir aber, durch welchen der beiden Spalten das Quantenobjekt jeweils dringt, verhält sich das Quantenobjekt ganz gemäß unserer Herangehensweise wie ein klassisches Teilchen und bildet entsprechend kein Interferenzmuster aus: Kontakt mit dem Mesokosmos („Beobachtung“) zerstört das fließende und ineinandergreifende Funktionieren des Mikrokosmos, ähnlich wie die kosmische Überlagerung das primordiale Universum aufgehoben hat. Die Quantenphysik zeigt, daß die Welt auf Mikroebene, d.h. „in ihrem wesensmäßigen Kern“, unabhängig von Raum und Zeit funktioniert und erst der Akt der Beobachtung das hervorruft, was beobachtet wird (sich bewegende Teilchen). Der Quantenphysiker spricht vom „Kollaps der Wellenfunktion“ durch Beobachtung. (Diese Frage wurde bereits in Kapitel II.2.c. angeschnitten. Ich komme auf sie am Ende dieses Kapitels zurück!)

VII.4.d. Spezielle Relativitätstheorie

Newton hat in seiner „Relativitätstheorie“ gezeigt, daß in einem geschlossenen Raum mit keinem mechanischen Experiment eine gleichmäßige Bewegung durch das Weltall registriert werden kann. Einstein führte seine Spezielle Relativitätstheorie ein, um als zweiter Newton zu erklären, warum man auch mit Licht und anderen elektromagnetischen Phänomenen die gleichmäßige Bewegung in einem geschlossenen Raum nicht messen kann. Es gibt nichts Fixes, nichts Bewegungsloses in der Natur, an dem man (unbeschleunigte) Bewegung festmachen könnte.\(^{66}\)

Bei Newton verändert eine Bewegung die jeweiligen Ortskoordinaten der verschiedenen Objekte, aber egal wie sich diese bewegen, bleibt die Zeit für alle Beobachter gleich. Zwischen 15 Uhr und 16 Uhr ist er dahin gegangen, sie dorthin und ich hierhin. Die Orte von uns drei Personen haben sich geändert, aber die Zeit, die eine Stunde, die wir jeweils auf unserer Armbanduhr abgelesen haben, ist für alle drei identisch. Bewegung führt zu einer Änderung im Raum \(L \), aber die Zeit \(t \) bleibt dadurch unberührt. Beide Funktionsbereiche beeinflussen sich nicht, sind bloße Varianten ihres CFPs Bewegung \(\nu = \frac{L}{t} \). Auch hier ist alles entsprechend Gl. 176.

Bei Einsteins Vollendung des Relativitätsprinzips ist das grundlegend anders. Wenn ich mich mit Lichtgeschwindigkeit bewegt habe, können zwar er und sie an ihren Uhren ablesen, daß ich in einer Stunde die Entfernung von „einer Lichtstunde“ zurückgelegt habe, doch für mich selbst, für meine Uhr, ist keinerlei Zeit verstrichen, obwohl ich nun an einem vollkommen anderen, denkbar weitentfernten Ort bin! Je schneller ich mich bewege, desto langsamer tickt meine Uhr, bis sie bei Lichtgeschwindigkeit stehenbleibt. Es herrscht buchstäblich „Zeitlosigkeit“ (Gl. 161).

Hier ließe sich natürlich einwenden, daß dies nur für einen der drei Beobachter zutrifft und daß in der Einsteinschen Relativitätstheorie nicht nur
\[
t' = (t - \frac{vx}{c^2})/\sqrt{1 - \frac{v^2}{c^2}}
gilt, sondern natürlich auch
\[
x' = (x - vt)/\sqrt{1 - \frac{v^2}{c^2}},
\]
sich also nicht nur zeitliche, sondern auch räumliche Abstände von der Geschwindigkeit \(v \) abhängen und es folglich nicht nur die „Zeitdilatation“, sondern auch die „Längenkontraktion“ gibt. Doch das ist nicht dasselbe, denn wenn Raumfahrer nach entsprechend schnellen Flügen nahe der Lichtgeschwindigkeit zur Erde zurückkehren, sind sie zwar durch Zeittidation für jeden Beobachter jünger geblieben als die Zurückgebliebenen, kehren aber nicht durch Längenkontraktion „geschrumpft“ zurück. Es ist, als hätten sie Energie in sich aufgesogen!

Daß die Zeit in der Speziellen Relativitätstheorie eine besondere Rolle spielt und durchaus nicht einfach eine „vierte quasi räumliche Dimension“ ist, zeigt sich anhand der dritten fundamentalen Größe, der Masse \(m \). Dazu wollen wir nicht nur die Geschwindigkeit \(v \) bzw. die Lichtgeschwindigkeit \(c \) betrachten, sondern den entsprechenden Impuls \(P = m \cdot v \). Das Problem ist nur, daß es in der relativistischen Physik das \(t \) gar nicht gibt, sondern \(t \) für jeden Beobachter etwas anderes ist, genauso wie ja auch jeder Beobachter eine andere Raumkoordinate hat. Aus diesem Grund muß man die vierdimensionale Raumzeit (die Zeit \(t \) multipliziert mit der Lichtgeschwindigkeit \(c \) plus den drei räumlichen Dimensionen, die man mit dem Ortsvektor \(r \) zusammenfassen kann) in ihrer Ganzheit betrachten, damit alle Beobachter sich auf ein Ereignis \(X \) einigen können: \(X = ct \cdot r \). Für den relativistischen Impuls ergibt das entsprechend: \(P = E/c \cdot \vec{p} \). Das bedeutet zweierlei:

67 Das wird einleuchtender, wenn man bedenkt, daß in Einsteins Relativitätstheorie, in der Masse gleich Energie bedeutet, mehr Masse (Energie) mit Zeitdilatation einhergeht. Ich werde später darauf zurückkommen.
Erstens, daß trotz aller „Relativistik“ für alle Beobachter der Impuls erhalten bleibt (nur so machen Erhaltungssätze Sinn!). Der relativistische Impuls \(P \) ist ein Vektor\(^{68} \) im vierdimensionalen Raum und, wie in Abb. 37 gezeigt, kann man Vektoren beliebig im Koordinatensystem verschieben und drehen: die Vektorsumme bleibt gleich.

Zweitens: anders als in der Newtonschen Physik muß bei Kollisionen nicht nur auf die Erhaltung des Impulses \(p \) geachtet werden, sondern zusätzlich auch auf die Erhaltung der Energie \(E \), was uns unmittelbar zur bekannten Formel \(E = m \cdot c^2 \) führt.

Dahinter steckt folgender Gedankengang (bei der zeitlichen Koordinate \(x_0 \) und nur einer räumlichen Koordinate \(x_1 \)):

\[P = (P_0, P_1) = \left(mc\sqrt{1 - v^2/c^2} \right) \left(mv\sqrt{1 - v^2/c^2} \right) \]

Was sich hinter dem rechten, „räumlichen“ Faktor \(P_1 = mv + mv^3/2c^2 + \ldots \) verbirgt? Zwar gibt es in der relativistischen Physik keine Möglichkeit die Geschwindigkeit \(c \) zu überschreiten, doch die räumliche Komponente des relativistischen Impulses, bei dem \(c \) überhaupt nicht auftaucht, zeigt, daß dieser wie der klassische Impuls \(p = m \cdot v \) beliebig ansteigen kann. Wenn man beispielsweise immer mehr Energie in einen Teilchenbeschleuniger pumpt, werden die Teilchen zwar nie schneller als das Licht werden, aber ihr Impuls kann theoretisch unendlich zunehmen.

Was hinter dem linken, „zeitlichen“ Faktor \(P_0 \) steht, wird sofort evident, wenn wir ihn wie folgt umformulieren: \(cP_0 = mc^2 + \frac{1}{2}mv^2 + \ldots \) Er steht für die Ruheenergie, d.h. selbst wenn die Geschwindigkeit \(v \) gegen Null geht, hat das Objekt neben der nicht mehr vorhandenen kinetischen Energie (\(\frac{1}{2} m \cdot v^2 \)) noch immer eine Energie, eben die Ruheenergie (\(m \cdot c^2 \)).

Wie haben in Abschnitt VII.3.c.gesehen, daß, wenn etwa zwei Autos mit gleicher Geschwindigkeit frontal kollidieren, sich die gerichtete kinetische Energie in „ungerichtete kinetische Energie“ (Wärmeenergie) umwandelt. Geschieht das gleiche in einem Teilchenbeschleuniger, wo zwei Elementarteilchen bei annähernder Lichtgeschwindigkeit zusammenprallen, wandelt sich die Bewegungsenergie in neue Masse um. Ganz entsprechend zu dem, was wir bei den beiden Wagen beobachtet haben: „Was wir hier vor uns haben, ist die Umwandlung des translatorischen Anteils der Kreiselwelle in ihren stationären (rotatorischen) Anteil.“\(^{69} \)

\(^{68} \) „\(P \)“ wird immer ohne Pfeil geschrieben, weil der relativistische Impuls von vornherein als Vektor definiert ist!

\(^{69} \) In VII.3.c. habe ich weitergeschrieben: „Das ganze ist eine Entsprechung der von Reich in Die kosmische Überlagerung beschriebenen Überlagerung von Orgonenergie-Strömen. Durch Überlagerung gehen sie von einer translatorischen Bewegung in eine rotatorische über, aus der schließlich Materie resultiert.“

Durch Annäherung an die Lichtgeschwindigkeit wird Energie gemäß Gl. 161 gebunden (Gl. 174), die dann bei Kollision gemäß Gl. 160 wieder frei wird (Gl. 175).

VII.4.e. Allgemeine Relativitätstheorie

Wir haben erklärt, warum die Schwerkraft nicht durchgehend von der Überlagerung bestimmt wird, wie Reich sie beschrieben hat, sondern zumindest im Mesokosmos von den Gesetzen, die Newton entdeckt hat. Ähnlich kann man, im Rückgriff auf neueste Erkenntnisse, erklären, warum der Mesokosmos keine quantenmechanische Welt ist, sondern die Newtonsche Mechanik vorherrscht:

Die Hauptfrage der modernen Physik war seit Anfang des letzten Jahrhunderts, wie die Quantenmechanik (keine durchgängige Zuordnung von Raum und Zeit, Diskontinuum: „Quanten“) mit der Einsteinschen Relativitätstheorie (lückenlose Zuordnung von Raum und Zeit, Kontinuum: „Raumzeit“) in Zusammenhang gebracht werden kann. Vor kurzem wurde eine denkbar einfache Theorie aufgestellt, die die Einordnung der quantenmechanischen Welt in unsere alltägliche mechanische Welt ausgerechnet mit Hilfe der Allgemeinen Relativitätstheorie ermöglicht, die normalerweise nur für die Kosmologie von Bedeutung ist.

Es geht darum, daß im Quantenbereich, der von der Schrödingerschen Quantwellengleichung beschrieben wird, die Objekte „räumlich verschmiert“, d.h. an mehreren Orten gleichzeitig vorhanden sind (Gl. 160). Wie werden aus den schemenhaften Quantenwellen die eingrenzbaren Objekte, die unsere Umwelt ausmachen und die die Mechanik beschreibt?

Die Forscher berechneten nun, daß die Quantenteilchen im Labor aufgrund der Masse der Erde und der damit einhergehenden Zeitdilatation ihre Quanteneigenschaften verlieren können, sobald sich diese kleinsten Teilchen zu größeren Objekten etwa Molekülen, Staubteilchen oder gar Mikroorganismen zusammenfügen. Die Quantenteilchen sind aufgrund der Unschärferelation quasi in ständiger „zittriger“ Bewegung. Ich verweise auf meine heikle Analogie mit dem Insektenschwarm! Dieses „Zittern“ wird durch die massebedingte Zeitdilatation so verlangsamt, daß die Quantenwellen kollabieren und entsprechend sich größere Objekte nicht mehr quantenmechanisch verhalten, d.h. nicht mehr „verschmiert“ (unbestimmt) sind.

Man betrachte dazu Abb. 42:

Im größeren (galaktischen) Bereich herrscht die kosmische Überlagerung vor („Orgonanziehung“), die, nachdem es zur Erzeugung von Masse gekommen ist, im kleineren (planetaren) Bereich in die mechanische Massenanziehung übergeht. Zunächst wird Orgonenergie gebunden (Gl. 174), um dann wieder freigesetzt zu werden (Gl. 175). Der letztere Bereich wird von Fernwirkung gemäß Gl. 161 geprägt.

70 Im makrokosmischen Bereich herrscht die ungreifbare „Dunkelmaterie“, im mikrokosmischen Bereich die ungreifbare „Vakuumenergie“ (siehe Abschnitt VII.4.c.).
VII.4.f. Funktionalismus

Das griechische Denken denkt hauptsächlich in Haupt- und Eigenschaftswörtern und abstrahiert die „Dinge“ aus dem fließenden Werden der Erscheinungen heraus. Da auch wir zur indoarischen Sprachfamilie gehören, ist es für uns selbstverständlich, daß ein Baum hoch ist oder daß ein Gebläse laut ist und wenn wir Philosophen sind, brahmanisieren wir teutonisch tief­sinnig über „das Sein“ (was immer das auch „sein“ mag). Demgegenüber denkt das Hebräische statt in Haupt- in Zeitwörtern, so „größt“ der Baum, er tut „größen“, und das Gebläse gibt Laute von sich, tut also etwas. So denkt der Hebräer von vornherein funktioneller als wir.

Die Renaissance, aus der mit Galilei die Physik hervorgegangen ist, war nicht nur einfach ein Wiederauflieben der klassischen Antike, sondern es fand eine schöpferische Überlagerung statt, die einen kreativen Impuls erzeugte, von dem wir noch heute zehren und der Europa zur geistigen Weltherrschaft verholfen hat:

das Hebräische

\[\text{die Wissenschaft}\]

das Griechische

Erst durch die explosive Verbindung des dynamischen geschichtlich denkenden „Judentums“ und des statischen Denkens des „Griechentums“ wurde das Denken in Naturgesetzen möglich – das ein inhärent funktionelles Denken ist. So skizziert der Philosophiehistoriker Stephan Otto die Renaissancephilosophie von Nikolaus von Kues bis Bruno wie folgt:

Der neue denkerische Weltentwurf konkretisiert sich als „wissenschaftlicher“ Blick, der sich nicht mehr auf die Dinge der Welt, sondern auf die sie verbindenden Funktionen richtet.

(Otto 1984)

Henri Bergson hat den Grundgedanken der Lebensphilosophie, daß es kein „Substrat“ gibt, so ausgedrückt:

Es gibt Veränderungen, aber es gibt unterhalb der Veränderungen keine Dinge, die sich verändern: die Veränderung hat keinen Träger nötig. Es gibt keinen unveränderlichen Gegenstand, der sich bewegt. (Bergson 1934)

Unübertroffen klar hat der Theologe Robert Eidam diese Gedanken für die Orgonomie formuliert:

Man vergegenwärtige sich, daß es drei historisch aufeinanderfolgende fundamentale Theorien in der Physik gab:

2. Faraday, Maxwell, Einstein: das physikalisch Reale sind nicht mechanisch deutbare, kontinuierliche Felder. Offensichtlich hat sich Reich teilweise mit diesem zweiten Muster identifiziert, so schrieb er am 3. März 1944 an Einstein:

 Ich ging im Jahre 1941 zu Ihnen (…), weil ich wußte, daß ich eine grundsätzliche kosmische Energieform entdeckte (…). Ich ahnte schon damals und bin seither in der Annahme bestärkt worden, daß die von mir entdeckte Energie (das „Orgon“), das von Ihrer Theorie mathematisch geforderte „Gravitationsfeld“ bestätigt. Ja mehr, daß diese Energie die
Riesenlücke auszufüllen geeignet ist, die früher durch die Hypothese eines universellen Äthers in unzureichender Weise ausgefüllt wurde. (Reich 1953b)

Und tatsächlich kann man die Feldtheorie als eine reformierte Theorie des Äthers betrachten, den man sich vorher noch als aus „materiellen Punkten“ zusammengesetzt hatte. Aber auch diese neue Theorie scheiterte schließlich an der physikalischen Wirklichkeit, die sich dem Einsteinschen Programm einer „einheitlichen Feldtheorie“ einfach nicht beugen wollte.

In der Quantenphysik ist der zeitliche Charakter der Wirklichkeit gewahrt, weil es ihr prinzipiell unmöglich ist die Wahrscheinlichkeit auf Eins zu reduzieren: die „Zukunft“ bleibt offen und damit dieser Begriff überhaupt erst sinnvoll.

Der Orgonometrie zufolge entfaltet sich die Gegenwart in die Zukunft hinein gemäß Gl. 17. Folgt man jedoch der klassischen Physik wäre diese Auffächerung auf einen Strich reduzierbar. Das kann man sich anhand einer Billardkugel vergegenwärtigen, die eine andere exakt in der Mitte trifft und deshalb die Linie der anstoßenden Kugel gradlinig fortführt.
Der zweite Graph zeigt die Ereignisverteilung bei Quantenphänomenen, gleichzeitig läßt sich ein Grundgesetz der Orgonometrie aufzeigen. In seinem Artikel über „Orgonometric Equations“ schreibt Reich, daß „die Variationen niemals ihr CFP (gemeinsames Funktionsprinzip) überschreiten können, das sie alle durchdringt und bestimmt“, innerhalb des CFPs jedoch vollkommene Freiheit herrscht (Reich 1950d). Diese funktionelle Identität von Freiheit und Bestimmtheit ist in der Quantenphysik geradezu archetypisch verkörpert. So kann ein Quantenereignis kaum jenseits von \(x + 1 \) eintreten (die Wahrscheinlichkeit geht gegen Null, ohne je ganz auf Null zu fallen) und eine Gruppe von Ereignissen wird sich immer um \(x \) sammeln (Determiniertheit), aber gleichzeitig kann innerhalb dieser Grenzen jedes einzelne Ereignis unvorherbestimmt eintreten (Freiheit). So ist die Welt weder ein Uhrwerk noch ein Chaos, sondern – funktionell:

\[
\text{Freiheit} \quad \begin{array}{c} \uparrow \end{array} \quad \text{Ordnung} \quad \text{Gl. 179}
\]

Außerdem ist die Welt nicht leer, weil „Null“, d.h. ein exakter Wert, nicht vorkommt!

Vor diesem Hintergrund hat Einsteins Ablehnung der Quantenmechanik viel gemeinsam mit seinem ablehnenden Verhalten Reich gegenüber! Reich: „Die mechanistische Struktur (…) mag das fließende und ineinandergreifende Funktionieren der Natur nicht“ (Reich 1949a).
Für Einstein war es unerträglich, daß in seinem Bereich des Forschens Unbestimmtheit und Spontanität herrschte. Aber betrachten wir die Motive Einsteins die Quantenphysik anzugreifen, die er ja immerhin selber mitbegründet hatte, etwas genauer:

2. Wie dargelegt, war für Einstein die letztendliche Realität das kontinuierliche Feld, d.h. die Physik muß versuchen alle Phänomene auf das Feldkonzept zu reduzieren. „Feld“ bedeutet dabei die abstrakte Zuordnung von Größen zu den Punkten des „Raumzeit-Kontinuums“. Das impliziert eine Welt, in der alles Sein ist. In einer solchen Welt „würfelt Gott nicht“. In einer solchen Welt kann es weder objektiven Zufall noch objektive Unbestimmtheit geben.

Ich habe bereits auf Heisenbergs Unbestimmtheitsrelation, was Impuls und Geschwindigkeit betrifft, hingewiesen. Das gleiche gilt z.B. auch für Energie und Zeit, d.h. je genauer ich die Energie eines Quantenobjektes messe, desto ungenauer wird die Bestimmung des Zeitpunkts der Messung. Sind also die Zeiträume klein, finden wir alle thermodynamischen Gesetze außer Kraft gesetzt, das bedeutet, daß in einem isolierten System die Entropie spontan abnehmen kann. Das konnte Einstein genauso wenig akzeptieren wie Reichs negentropisches Orgon!

Ließe sich nun „ein Experiment finden, in dem diese Unschärferelation verletzt wird, so wäre die Quantenmechanik falsch“ (Brachner, Fichtner 1980). Wie erläutert, glaubte Einstein mit den von ihm nahegelegten EPR-Experimenten genau dies zu zeigen.

Hier wird S1 bei x nach unten abgelenkt, was natürlich S2 bei y nicht beeinflussen dürfte, so daß S2 auf der gestrichelten Linie weiterfliegt. Davon ist auch Einstein ausgegangen. Tatsächlich bleibt aber in der Quantenwelt S12 auch nach der Bifurkation als funktionelles Ganzes bestehen, so daß folglich der Spin 0 erhalten bleiben und deshalb S2 bei y zum Ausgleich nach oben fliegen muß. Daher benehmen sich S1 und S2 so, als gäbe es zwischen x und y überhaupt keinen separierenden Raum. Aber gerade das „Lokalitätsprinzip“ war für Einstein die Grundlage der Physik, denn ohne die Annahme, daß der Raum die Dinge separiert, „wäre physikalisches Denken in dem uns geläufigen Sinne nicht möglich“. Damit ist ein Denken in mechanischen Modellen gemeint. Tatsächlich zeigen aber die EPR-Experimente, daß es der Natur nicht in erster Linie um Teilchen geht, sondern um die Beziehung zwischen den Teilchen („Naturgesetze“). Mit anderen Worten, die Natur ist nicht mechanistisch, sondern funktionell.

Grundlage der Physik kann nur der organomische Funktionalismus sein, dessen Grundprinzip es ist, daß die aus einem Differenzierungsprozeß des Ganzen hervorgegangenen Teile nur vom Ganzen her verstanden werden können. Der Unterschied zwischen Meso- und Quantenwelt besteht nun darin, daß in der letzteren das gemeinsame Funktionsprinzip (CFP) der Phänomene eine noch gewichtigere Rolle spielt als ohnehin schon.

Mit anderen Worten: wir können nicht anders sehen, als unser Auge zuläßt, nicht anders reden, als uns der Schnabel gewachsen ist; nicht anders auffassen, als die Stammbegriffe unseres Verstandes bedingen. (Lange 1866)

Wir können die durch unsere Struktur bedingten Beschränkungen weder in die primordiale Orgonenergie noch in die Quantenwelt hineintragen, ohne ein heilloses Durcheinander anzurichten. Deshalb verwendet der organomische Funktionalismus statt Modellen Funktionsschemata. Dabei ist der Hauptunterschied zwischen Schema (z.B. das organomische Symbol) und Modell (z.B. eine chemische Strukturformel), daß das Schema unterschiedliche Funktionen beschreiben kann, während ein Modell immer nur eine spezielle Funktion beschreibt. Dieser „leere“ glasperlenspiel-artige Charakter des funktionellen Denkens findet sich auch in der Quantentheorie wieder, die Einstein wie folgt beschrieben hat:

Zeitlicher Verlauf einer Wahrscheinlichkeits-Konfiguration für mögliche Beobachtung statt Modellbeschreibung dessen, was in Raum und Zeit ist beziehungsweise vorgeht. (Einstein 1950)

Interessanterweise besteht zwischen dieser „Wahrscheinlichkeits-Konfiguration“ und der organonotischen Kreiselwelle (KRW), bzw. ihrer Ableitung als Sinuswelle, eine
funktionelle Identität, denn die quantenphysikalische Statistik genügt ausgerechnet gerade solchen Gesetzen, die auch kontinuierliche klassische Wellen beschreiben. Warum das so ist, „ist bis heute ein Rätsel. Wir können dies zwar aus den Experimenten ablesen, aber eine tiefere Begründung fehlt“ (Brachner, Fichtner 1980).

Erst die Quantenphysik sollte dieses mechano-mystische Weltbild erschüttern und quasi zur magischen Welt des Animismus zurückkehren, für den die Grenzen zwischen Innen und Außen fließend sind. In vollständiger Harmonie mit dem organomischen Funktionalismus entdeckte die Quantenphysik eine dritte Ebene (das CFP), in der die Trennung zwischen Subjekt und Objekt aufgehoben ist und einer funktionellen Realität Platz macht.

Wie Fred A. Wolf in seinem Buch Der Quantensprung ist keine Hexerei schreibt, gibt es der Quantenphysik zufolge (…) eine dritte Wirklichkeit, die Eigenschaften sowohl der „äußeren“ als auch der „inneren“ Realität aufweist. Ich stelle mir diese dritte Wirklichkeit als eine Brücke zwischen der Welt des Geistes und der Welt der Materie vor. Da sie Eigenschaften jeder der beiden Welten an sich trägt, ist es eine paradoxe und magische Realität. (Wolfe 1981)

In Wirklichkeit sind die Wolfschen „Geister“ Funktionen im Sinne der Orgonomie.71

71 Tatsächlich setzt Wolf in Körper, Geist und neue Physik die besagten „Wellenfunktionen“ mit Reichs Orgon gleich (Wolf 1986).
Was sind denn überhaupt „Quanten“? Sie stellen unteilbare „funktionelle Einheiten“ dar. Man kann sie mit Organismen vergleichen, nur daß hier die Funktion schließlich ohne Träger auftritt, sozusagen „nackt“. Als konkretes Beispiel für das Quantenproblem nehmen wir das Licht:

Vor der Quantenphysik war man nach einigen Umwegen zu der Überzeugung gekommen, daß das Licht nicht aus Korpuskeln besteht, wie noch Newton glaubte, sondern aus elektromagnetischen Wellen. Einen Beweis für die Wellennatur des Lichts findet man im bereits erwähnten Doppelspaltversuch. Zunächst läßt man das Licht durch einen einzigen Spalt auf einen Schirm in einer Dunkelkammer fallen. Wie nach dem Teilchenmodell nicht anders zu erwarten, zeigt sich auf dem Schirm ein verschwommener unstrukturierter Lichtfleck. Öffnet man nun aber einen zweiten benachbarten Spalt, erscheinen nicht etwa zwei dieser Lichtflecken, sondern ein Interferenzmuster, das durch die Überlagerung der beiden Lichtstrahlen entsteht und so die Wellennatur des Lichts nachweist.

Als zweiten Versuch nehmen wir jetzt ultraviolette Lichtwellen und bestrahlen eine Metalloberfläche mit sehr schwacher Intensität, um Elektronen freizusetzen. Nach unserer experimentell nachgewiesenen Wellentheorie müßten die Elektronen die Wellenenergie langsam speichern, bis sie genug Energie zum Austritt aus der Metalloberfläche haben. Da das Licht so schwach ist, wird diese Speicherung geraume Zeit in Anspruch nehmen. Nun zeigt aber der Versuch, daß die Elektronen ohne jede Verzögerung austreten, so als wären sie von Lichtteilchen herausgeschlagen worden. Ein weiterer Beweis für die Teilchennatur des Lichts ist, daß die Bewegungsgenergie der Elektronen vollkommen unabhängig von der Lichtintensität ist, die nur die Anzahl der austretenden Elektronen bestimmt.

Einstein analysierte diesen „photoelektrischen Effekt“ 1905 und erklärte ihn, indem er unteilbare Lichtquanten postulierte, die später „Photonen“ genannt wurden. Ihre Unteilbarkeit kann man auch an folgendem Beispiel ersehen:

Naturally könnte man dem entgegenhalten, daß Photon wäre einfach wie eine Gewehrkugel zu uns geflogen, wir also auf die „Wellenzug-Kugel“ verzichten können. Aber so einfach kann man sich die Sache nicht machen. Daß wir den Wellenzug nicht vom Photon trennen können, wird evident, wenn wir den photoelektrischen

Das „geisterhafte“ Vorhandensein von Quanten (in diesem Fall Photonen) an zwei verschiedenen Orten zur gleichen Zeit, läßt sich auch mit dem Michelson-Interferometer nachweisen. In ihm wird eine Lichtwelle durch einen Halbspiegel geteilt und über andere Spiegel wieder so zusammengeführt, daß sie sich mit sich selbst überlagert. Man kann diesen Versuch auch so durchführen, daß sich jeweils nur ein Photon im Interferometer befindet. Dabei kann es natürlich nur jeweils einen der zwei möglichen Wege einschlagen. Aber trotzdem bildet sich nach einiger Zeit wieder das übliche Interferenzstreifensystem!

Literatur

Aichelburg PC, Sexl RU (Hrsg.) 1979: Albert Einstein. Sein Einfluß auf Physik, Philosophie und Politik, Braunschweig: Vieweg
Aichelburg PC (Hrsg.) 1988: Zeit im Wandel der Zeit, Braunschweig: Vieweg
Bergson H 1889: Zeit und Freiheit, Jena: Eugen Diederichs, 1911
Bergson H 1900: Das Lachen, Darmstadt: Luchterhand-Literaturverlag, 1988
Bergson H 1934: Denken und schöpferisches Werden, Hamburg: Europäische Verlagsanstalt, 1993
Brachner A, Fichtner R 1980: Quantenmechanik, Hannover: Schroedel
Brückov E 2001: Philosophie der Zahlen, Treuchlingen-Berlin: Verlag Walter E. Keller
Bütttemeyer W (Hrsg.) 2003: Philosophie der Mathematik, Freiburg: Verlag Karl Alber
DeMeo J 2002a: Reconciling Miller’s Ether-Drift with Reich’s Dynamic Orgone. Pulse of the Planet, 5:137-146
Heymer A 1995: Die Pygmäen, München: List Verlag
Hoppe W 1984: Wilhelm Reich und andere große Männer der Wissenschaft im Kampf mit dem Irrationalismus, München: Kurt Nane Jürgensen Verlag
Ifrah G 1984: Universalgeschichte der Zahlen, Frankfurt: Campus Verlag, 1986
Jaspers K 1919: Psychologie der Weltanschauungen, Berlin: Springer-Verlag, 1971
Jörgenson L 1990: Ein Überblick über die Grauzone in der Wissenschaft, Berlin: WDB-Verlag
Kaempfer W 1991: Die Zeit und die Uhren, Frankfurt: Insel Verlag
Lange FA 1866: Geschichte des Materialismus (2 Bde.), Frankfurt: Suhrkamp Verlag, 1974
Linhard F 2002: Klassische Mechanik, Frankfurt: Fischer Taschenbuch Verlag
Massey BS 1986: Measures in Science and Engineering. Their Expression, Relation and Interpretation, Chichester, GB: E. Horwood
Meyerowitz J 1994: Before the Beginning of Time, Easton, PA.: rRp publishers
Nelson RA, Ruby L 1993: Physiological Units in the SI. Metrologia 30(2):55-60
Nietzsche F 1885: Also sprach Zarathustra, KRITISCHE STUDIENAUSGABE, Bd. 4, Hrsg. G. Colli, M. Montinari, München: dtv/de Gruyter, 1988
Reich W 1944a: Orgonotic Pulsation – The differentiation of the orgone energy from electromagnetism, presented in talks with an electrophysicist. International Journal of Sex-Economy and Orgone-Research 3(2,3):97-150
Reich W 1948: Der Krebs, Frankfurt: Fischer Taschenbuch Verlag, 1976
Reich W 1949a: Äther, Gott und Teufel, Frankfurt: Nexus Verlag, 1983
Reich W 1949b: Charakteranalyse, Köln: KiWi, 1989

www.orgonomie.net
Reich W 1951b: The Orgone Energy Accumulator, Its Scientific and Medical Use, Rangeley, Maine: The Wilhelm Reich Foundation
Reich W 1953a: Christusmord, Freiburg: Walter-Verlag, 1978
Reich W 1953b: The Einstein Affair, Rangeley, Maine: Orgone Institute Press
Reich W 1954: Conspiracy, An Emotional Chain Reaction, Rangeley, Maine: Orgone Institute Press
Reich W 1955: Introduction "Melanor, Orite, Brownite and Orene". CORE 7(1,2):29-31
Reich W 1975: Frühe Schriften 1, Köln: Kiepenheuer & Witsch, 1977
Reich W 1997: Jenseits der Psychologie, Köln: Kiepenheuer & Witsch
Thiel Ch 1995: Philosophie und Mathematik, Darmstadt: Wissenschaftliche Buchgesellschaft
Waerden BL van der 1966: Erwachende Wissenschaft. Ägyptische, babylonische und griechische Mathematik, Basel: Birkhäuser
Wichmann EH 1978: Quantenphysik, Braunschweig: Vieweg